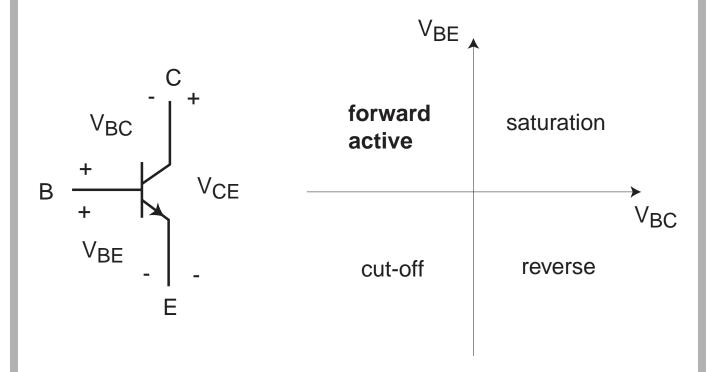
Lecture 18 The Bipolar Junction Transistor (II) Regimes of Operation

Outline

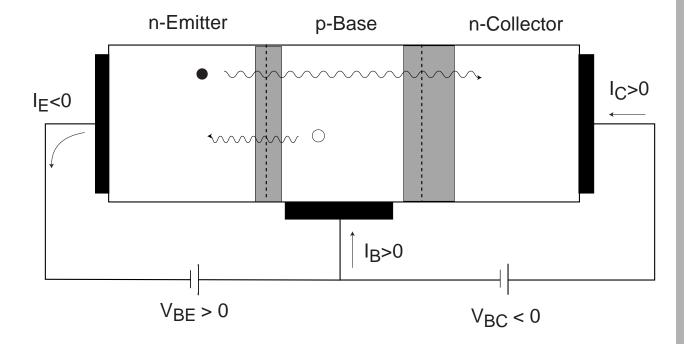
- Regimes of operation
- Large-signal equivalent circuit model
- Output characteristics

Reading Assignment:

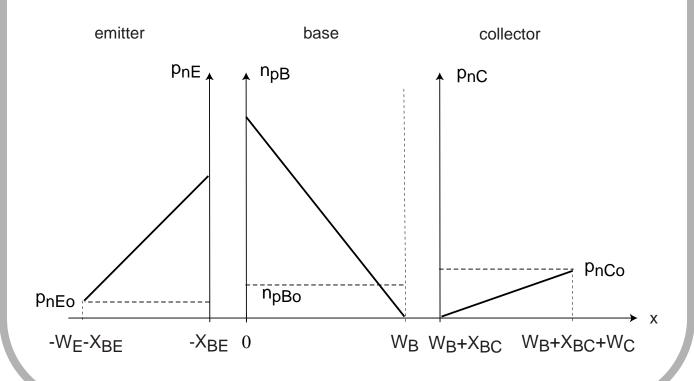

Howe and Sodini; Chapter 7, Sections 7.3, 7.4 & 7.5

Announcement:

Quiz #2: April 25, 7:30-9:30 PM at Walker. Calculator


Required. Open book.

1. BJT: Regions of Operation



- Forward active: device has high voltage gain and high β;
- Reverse active: poor β; not useful;
- *Cut-off*: negligible current: nearly an open circuit;
- *Saturation*: device is flooded with minority carriers;
 - \Rightarrow takes time to get out of saturation

Forward-Active Regime: $V_{BE} > 0$, $V_{BC} < 0$

Minority Carrier profiles (not to scale):

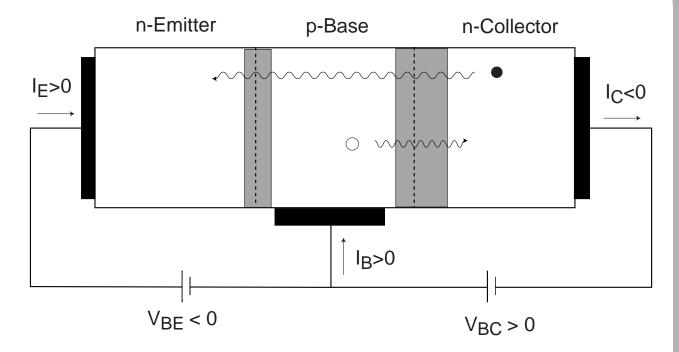
Forward-Active Regime: $V_{BE} > 0$, $V_{BC} < 0$

• *Emitter* injects **electrons** into *base*, *collector* extracts (collects) **electrons** from *base*:

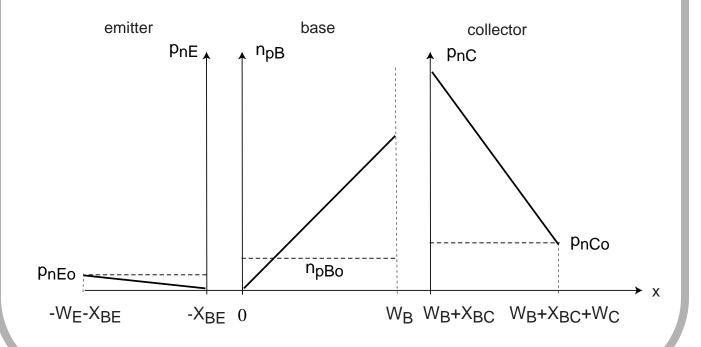
$$I_C = I_S e^{\left[\frac{V_{BE}}{V_{th}}\right]}, \qquad I_S = \frac{qA_E n_{pBo}D_n}{W_B}$$

• **Base** injects **holes** into **emitter**, **holes** recombine at **emitter** contact:

$$I_B = \frac{I_S}{\beta_F} \left[e^{\left[\frac{V_{BE}}{V_{th}} \right]} - 1 \right]; \qquad \frac{I_S}{\beta_F} = \frac{qA_E p_{nEo} D_p}{W_E}$$


• *Emitter* current:

$$I_{E} = -I_{C} - I_{B} = -I_{S}e^{\left[\frac{V_{BE}}{V_{th}}\right]} - \frac{I_{S}}{\beta_{F}} \left(e^{\left[\frac{V_{BE}}{V_{th}}\right]} - 1\right)$$


- State-of-the-art IC BJT's today: $I_S \approx 0.1 1 \text{ fA}$
- $\beta_F \approx 50 300$.
- β_F hard to control tightly: \Rightarrow circuit design techniques required to be insensitive to variations in β_F .

$$\beta_{F} = \frac{I_{C}}{I_{B}} = \frac{n_{pBo} \bullet \frac{D_{n}}{W_{B}}}{p_{nEo} \bullet \frac{D_{p}}{W_{E}}} = \frac{N_{dE}D_{n}W_{E}}{N_{aB}D_{p}W_{B}}$$

Reverse-Active Regime: $V_{BE} < 0$, $V_{BC} > 0$

Minority Carrier Profiles (not to scale):

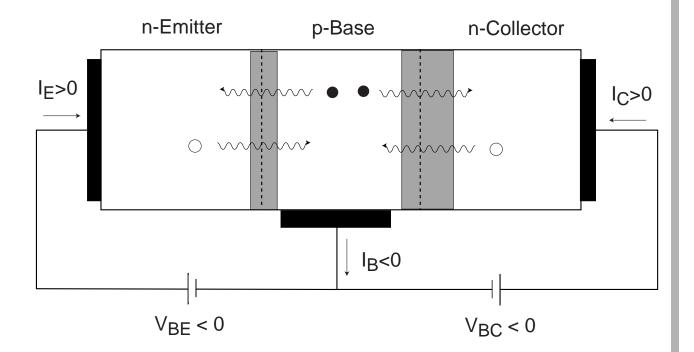
Reverse-Active Regime: $V_{BE} < 0$, $V_{BC} > 0$

• *Collector* injects electrons into *base*, *emitter* extracts (collects) electrons from *base*:

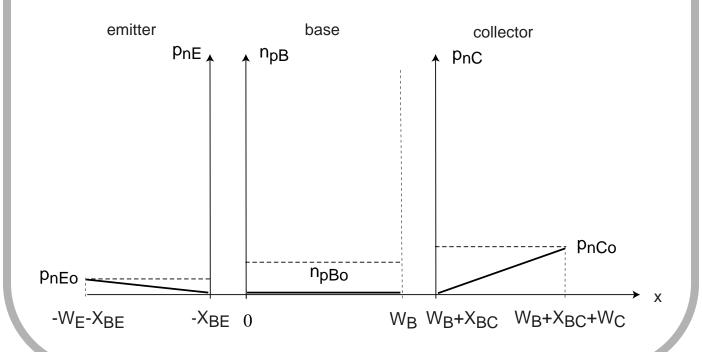
$$I_E = I_S e^{\left[\frac{V_{BC}}{V_{th}}\right]}, \qquad I_S = \frac{qA_C n_{pBo}D_n}{W_B}$$

• *Base* injects holes into *collector*, **holes** recombine at *collector* contact and buried layer:

$$I_B = \frac{I_S}{\beta_R} \left| e^{\left(\frac{V_{BC}}{V_{th}}\right)} - 1 \right|; \qquad \frac{I_S}{\beta_R} = \frac{qA_C p_{nCo} D_p}{W_C}$$


• *Collector* current:

$$I_{C} = -I_{E} - I_{B} = -I_{S}e^{\left[\frac{V_{BC}}{V_{th}}\right]} - \frac{I_{S}}{\beta_{R}} \left(e^{\left[\frac{V_{BC}}{V_{th}}\right]} - 1\right)$$


• Typically, $\beta_R \approx 0.1$ - 5 << β_F .

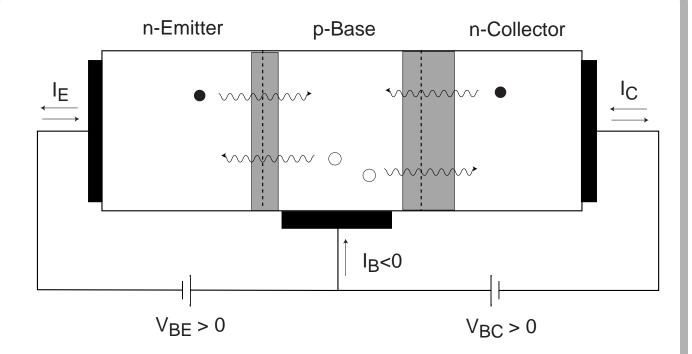
$$\beta_{R} = \frac{I_{E}}{I_{B}} = \frac{n_{pBo} \bullet \frac{D_{n}}{W_{B}}}{p_{nCo} \bullet \frac{D_{p}}{W_{C}}} = \frac{N_{dC}D_{n}W_{C}}{N_{aB}D_{p}W_{B}}$$

Cut-Off Regime: $V_{BE} < 0, V_{BC} < 0$

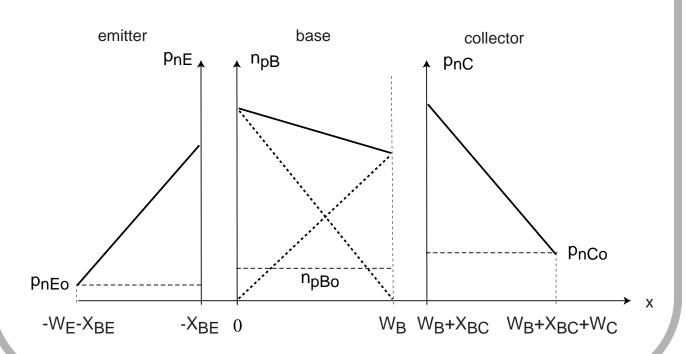
Minority Carrier Profiles (not to scale):

Cut-Off Regime: $V_{BE} < 0$, $V_{BC} < 0$

• **Base** extracts holes from **emitter**:


$$I_{B1} = -\frac{I_S}{\beta_F} = -I_E$$

• **Base** extracts holes from **collector**:


$$I_{B2} = -\frac{I_S}{\beta_R} = -I_C$$

• These are tiny leakage currents ($\approx 10^{-15}$ A).

Saturation Regime: $V_{BE} > 0$, $V_{BC} > 0$

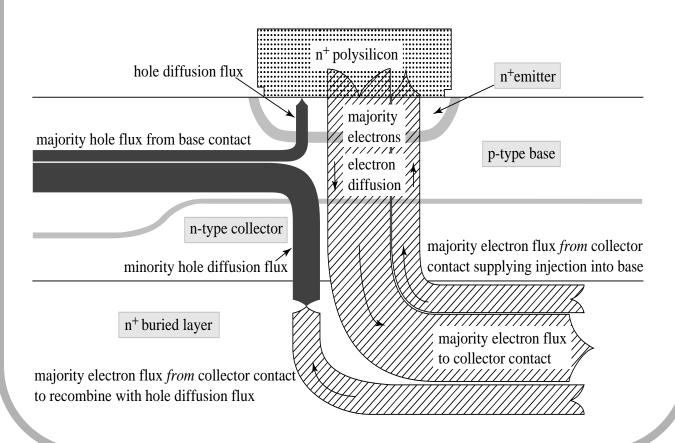
Minority Carrier profiles (not to scale):

Saturation Regime: $V_{BE} > 0$, $V_{BC} > 0$

Saturation is superposition of forward active + reverse

active:

$$I_{C} = I_{S} \left(e^{\left[\frac{V_{BE}}{V_{th}}\right]} - e^{\left[\frac{V_{BC}}{V_{th}}\right]} \right) - \frac{I_{S}}{\beta_{R}} \left(e^{\left[\frac{V_{BC}}{V_{th}}\right]} - 1 \right)$$


$$I_{B} = \frac{I_{S}}{\beta_{F}} \left[e^{\left[\frac{V_{BE}}{V_{th}} \right]} - 1 \right] + \frac{I_{S}}{\beta_{R}} \left[e^{\left[\frac{V_{BC}}{V_{th}} \right]} - 1 \right]$$

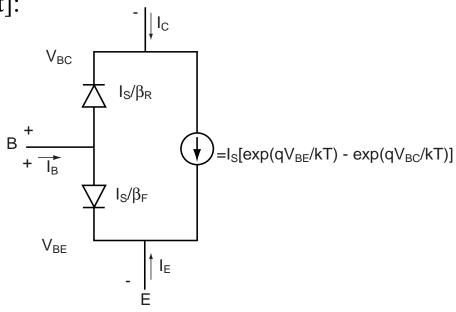
$$I_{E} = -I_{S} \left[e^{\left[\frac{V_{RE}}{V_{th}} \right]} - e^{\left[\frac{V_{RC}}{V_{th}} \right]} \right] - \frac{I_{S}}{\beta_{F}} \left[e^{\left[\frac{V_{RE}}{V_{th}} \right]} - 1 \right]$$

• I_C and I_E can have either sign, depending on relative magnitudes of V_{BE} and V_{BC} and β_F and β_R .

Saturation - The Flux Picture

- Both junctions are injecting and collecting.
- Electrons injected from emitter into base are collected by the collector as in Forward Active case.
- Electrons injected from collector into the base are collected by the emitter as in Reverse Active case.
- Holes injected into emitter recombine at ohmic contact as in Forward Active case.
- Holes injected into collector recombine with electrons in the n⁺ buried layer

2. Large-signal equivalent circuit model


System of equations that describes BJT operation:

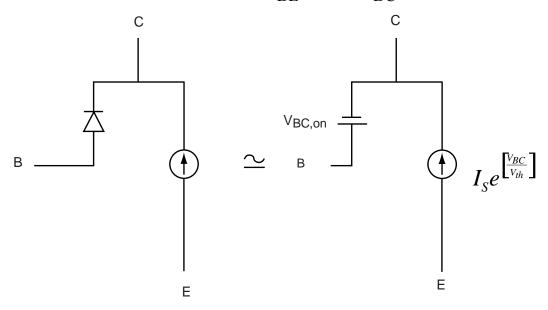
$$I_{C} = I_{S} \left[e^{\begin{bmatrix} \overline{V}_{RE} \\ V_{th} \end{bmatrix}} - e^{\begin{bmatrix} \overline{V}_{RC} \\ V_{th} \end{bmatrix}} \right] - \frac{I_{S}}{\beta_{R}} \left[e^{\begin{bmatrix} \overline{V}_{RC} \\ V_{th} \end{bmatrix}} - 1 \right]$$

$$I_{B} = \frac{I_{S}}{\beta_{F}} \left[e^{\begin{bmatrix} \overline{V}_{RE} \\ V_{th} \end{bmatrix}} - 1 \right] + \frac{I_{S}}{\beta_{R}} \left[e^{\begin{bmatrix} \overline{V}_{RC} \\ V_{th} \end{bmatrix}} - 1 \right]$$

$$I_{E} = -I_{S} \left[e^{\begin{bmatrix} \overline{V}_{RE} \\ V_{th} \end{bmatrix}} - e^{\begin{bmatrix} \overline{V}_{RC} \\ V_{th} \end{bmatrix}} \right] - \frac{I_{S}}{\beta_{F}} \left[e^{\begin{bmatrix} \overline{V}_{RE} \\ V_{th} \end{bmatrix}} - 1 \right]$$

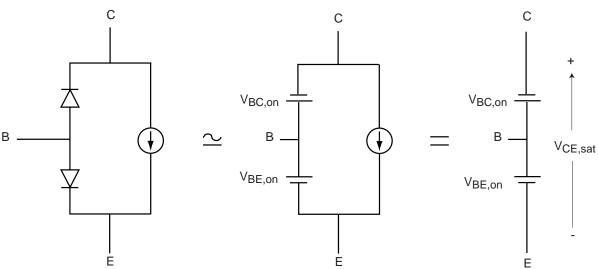
Equivalent-circuit model representation (non-linear hybrid- π model) [particular rendition of Ebers-Moll model in text]:

Three parameters in this model: I_S , β_F , and β_R .


Simplification of equivalent circuit model:

• Forward-active regime: $V_{BE} > 0$, $V_{BC} < 0$

For today's technology: $V_{BE,on} \approx 0.7 \ V. \ I_B$ depends on outside circuit.


• Reverse-active regime: $V_{BE} < 0, V_{BC} > 0$

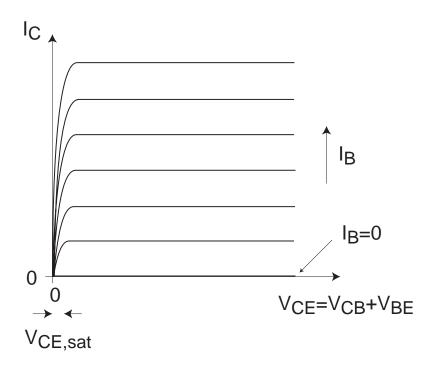
For today's technology: $V_{BC,on} \approx 0.6 \text{ V}$

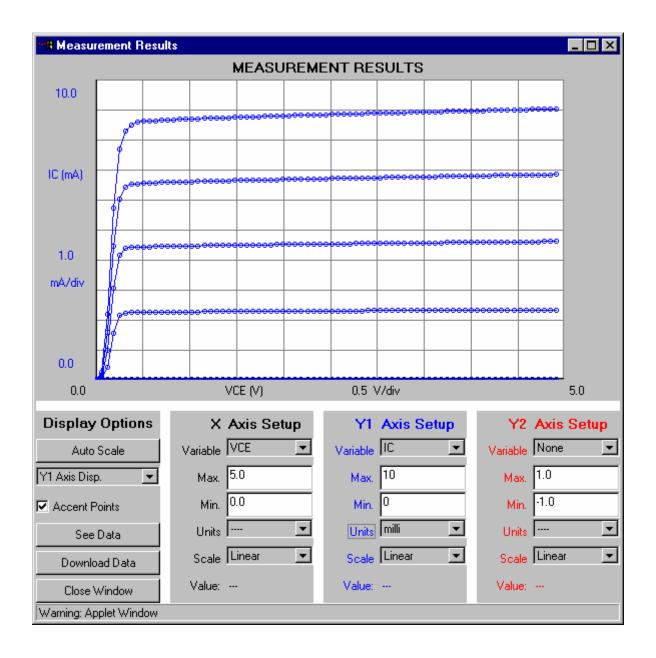
Simplification of equivalent circuit model:

• Saturation regime: $V_{BE} > 0$, $V_{BC} > 0$

For today's technology: $V_{CE,sat} \approx 0.1~V.~I_C$ and I_B depend on outside circuit.

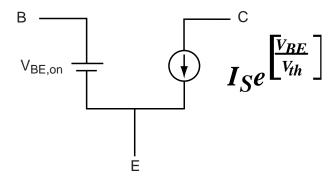
• Cut-off regime: $V_{BE} < 0, V_{BC} < 0$


В _____

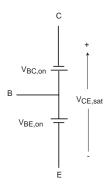

Only negligible leakage currents.

3. Output Characteristics

Common-emitter output characteristics:



Common-Emitter Output Characteristics



What did we learn today? Summary of Key Concepts

• *Forward-active regime*: For bias calculations:

• Saturation Regime: For bias calculations:

• *Cut-off Regime*: For bias calculations:

