Lecture 19

Transistor Amplifiers (I)
Common-Source Amplifier

Outline

• Amplifier fundamentals
• Common-source amplifier
• Common-source amplifier with current-source supply

Reading Assignment:
Howe and Sodini; Chapter 8, Sections 8.1-8.4

Announcement:
Amplifier Fundamentals

- Source resistance R_S is associated *only* with small signal sources
- Choose $I_D = I_{SUP}$ --- DC output current
 - $I_{OUT} = 0$
 - $V_{OUT} = 0$

\[v_{IN} = V_{BIAS} + v_s \]
\[i_{IN} = I_{BIAS} + i_s \]

\[v_{OUT} \]

\[i_{OUT} = i_d \]
2. Common-Source Amplifier:

Consider the following circuit:

- Consider intrinsic voltage amplifier - no loading
 - $R_S = 0$
 - $R_L \rightarrow \infty$
 - $V_{GS} = V_{BIAS} - V_{SS}$

- V_{BIAS}, R_D and W/L of MOSFET selected to bias transistor in saturation and obtain desired output bias point (i.e. $V_{OUT} = 0$).

Watch notation: $v_{OUT}(t) = V_{OUT} + v_{out}(t)$
Load line view of amplifier:

Transfer characteristics of amplifier:

Want:
- Bias point calculation;
- Limits to signal swing
- Small-signal gain;
- Frequency response [in a few days]
Bias point: choice of V_{BIAS}, W/L, and R_D to keep transistor in saturation and to get proper quiescent V_{OUT}.

Assume MOSFET is in saturation:

\[I_D = \frac{W}{2L} \mu_n C_{ox} (V_{BIAS} - V_{SS} - V_T)^2 \]

\[I_R = \frac{V_{DD} - V_{OUT}}{R_D} \]

If we select $V_{OUT}=0$:

\[I_D = I_R = \frac{W}{2L} \mu_n C_{ox} (V_{BIAS} - V_{SS} - V_T)^2 = \frac{V_{DD}}{R_D} \]

Then:

\[V_{BIAS} = \sqrt{\frac{2I_D}{\frac{W}{L} \mu_n C_{ox}}} + V_{SS} + V_T \]

Equation that allows us to compute needed V_{BIAS} given R_D and W/L.
Signal swing:

- Upswing: limited by MOSFET going into cut-off.

\[v_{out,\text{max}} = V_{DD} \]

- Downswing: limited by MOSFET leaving saturation.

\[V_{DS,\text{sat}} = V_{GS} - V_T = \sqrt{\frac{2I_D}{W/L} \mu_n C_{ox}} \]

or

\[v_{out,\text{min}} - V_{SS} = V_{BIAS} - V_{SS} - V_T \]

Then:

\[v_{out,\text{min}} = V_{BIAS} - V_T \]
Generic view of the effect of loading on small-signal operation

Two-port network view of small-signal equivalent circuit model of a voltage amplifier:

- R_{in} is *input resistance*
- R_{out} is *output resistance*
- A_{vo} is *unloaded voltage gain*

![Diagram](image)

Voltage divider at input:

$$v_{\text{in}} = R_{\text{in}} \frac{v_s}{R_{\text{in}} + R_s}$$

Voltage divider at output:

$$v_{\text{out}} = R_L \frac{A_{\text{vo}} v_{\text{in}}}{R_{\text{out}} + R_L}$$

Loaded voltage gain:

$$\frac{v_{\text{out}}}{v_s} = \frac{R_{\text{in}}}{R_{\text{in}} + R_s} A_{\text{vo}} \frac{R_L}{R_L + R_{\text{out}}}$$
Small-signal voltage gain A_{vo}: draw small-signal equivalent circuit model: Remove R_L and R_S

\[v_{out} = -g_m v_t \left(r_o // R_D \right) \]

Then unloaded voltage gain:

\[A_{vo} = \frac{v_{out}}{v_t} = -g_m \left(r_o // R_D \right) \]
Input Resistance

- Calculation of input resistance, R_{in}:
 - Load amplifier with R_L
 - Apply test voltage (or current) at input, measure test current (or voltage).

For common-source amplifier:

$$i_t = 0 \Rightarrow R_{in} = \frac{v_t}{i_t} = \infty$$

No effect of loading at input.
Output Resistance

- Calculation of output resistance, R_{out}:
 - Load amplifier with R_S
 - Apply test voltage (or current) at output, measure test current (or voltage).
 - Set input source equal zero

For common-source amplifier:

\[v_{gs} = 0 \Rightarrow g_m v_{gs} = 0 \Rightarrow v_t = i_t \left(r_o // R_D \right) \]

\[R_{out} = \frac{v_t}{i_t} = r_o // R_D \]
Two-port network view of common-source amplifier
Voltage Amplifier

\[
\frac{v_{out}}{v_s} = \frac{R_{in}}{R_{in} + R_S} A_{vo} \frac{R_L}{R_L + R_{out}}
\]

\[
\frac{v_{out}}{v_s} = -g_m \left(r_o \parallel R_D \right) \frac{R_L}{R_L + r_o \parallel R_D} = -g_m \left(r_o \parallel R_D \parallel R_L \right)
\]
Current Source Supply

I—V characteristics of current source:

\[i_{SUP} = \begin{cases} 0 & \text{for } v_{SUP} \leq 0 \\ ISUP + \frac{v_{SUP}}{r_{oc}} & \text{for } v_{SUP} > 0 \end{cases} \]

High small-signal resistance \(r_{oc} \).

Equivalent circuit models:

- Large-signal model
- Small-signal model
3. Common-source amplifier with current-source supply

![Common-source amplifier with current-source supply diagram]

Loadline View

- $i_{SUP} = i_D$
- $V_{BIAS} - V_S = V_{DD} - V_{SS}$
- $V_{BIAS} = V_T$
- $0 = V_{SS}$
- V_{OUT}
- V_{DD}
- R_S
- R_L
- Signal source
- Signal load
Use PMOS for current source supply

Bias point: Assume both transistors in saturation
\(V_{OUT} = 0 \). Choose \(I_{SUP} \) and determine \(V_B \).

\[
I_{SUP} = -I_{Dp} = \left(\frac{W}{2L} \right)_p \mu_p C_{ox} \left(V_{DD} - V_B + V_{Tp} \right)^2
\]

Set \(-I_{Dp} = I_{Dn}\) for \(V_{OUT} \approx 0 \)

\[
I_{SUP} = I_{Dn} = \left(\frac{W}{2L} \right)_n \mu_n C_{ox} \left(V_{BIAS} - V_{SS} - V_{Tn} \right)^2
\]

\[
V_{BIAS} = \sqrt{\frac{2I_{SUP}}{\left(\frac{W}{L} \right)_n \mu_n C_{ox}}} + V_{SS} + V_T
\]
Signal swing:

- Upswing: limited by PMOS leaving saturation.

\[V_{SD,sat} = V_{SG} + V_{Tp} = V_{DD} - V_B + V_{Tp} \]

\[V_{DD} - v_{out,\text{max}} = V_{DD} - V_B + V_{Tp} \]

\[v_{out,\text{max}} = V_B - V_{Tp} \]

- Downswing: limited by NMOS leaving saturation.
- Same result as with resistive supply current.

\[v_{out,\text{min}} = V_{BIAS} - V_T \]
3. Common-source amplifier with current-source supply (contd.)

Current source characterized by high output resistance: r_{oc}. Significantly higher than amplifier with resistive supply.

p-channel MOSFET: $r_{oc} = 1/\lambda I_{Dp}$

- Voltage gain: $A_{vo} = -g_m (r_o//r_{oc})$.
- Input resistance: $R_{in} = \infty$
- Output resistance: $R_{out} = r_o//r_{oc}$.
Relationship between circuit figures of merit and device parameters

Remember:

$$g_m = \sqrt{2I_D \frac{W}{L} \mu_n C_{ox}}$$

$$r_o \approx \frac{1}{\lambda_n I_D} \propto \frac{L}{I_D}$$

Then:

<table>
<thead>
<tr>
<th>Device* Parameters</th>
<th>Circuit Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
</tr>
<tr>
<td>$I_{SUP} \uparrow$</td>
<td>\downarrow</td>
</tr>
<tr>
<td>$W \uparrow$</td>
<td>\uparrow</td>
</tr>
<tr>
<td>$L \uparrow$</td>
<td>\uparrow</td>
</tr>
</tbody>
</table>

* adjustments are made to V_{BIAS} so that none of the other parameters change

CS amplifier with current source supply is a good voltage amplifier (R_{in} high and $|A_{vol}|$ high), but R_{out} high too \Rightarrow voltage gain degraded if $R_L << r_o//r_{oc}$.
What did we learn today?

Summary of Key Concepts for CS amplifier

- Bias Calculations
- Signal Swing
- Small Signal Circuit Parameters
 - Voltage Gain - A_{VO}
 - Input Resistance - R_{in}
 - Output Resistance - R_{out}
- Relationship between small signal circuit and device parameters