Lecture 21 Frequency Response of Amplifiers (I) Common-Emitter Amplifier

Outline

- Review frequency domain analysis
- BJT and MOSFET models for frequency response
- Frequency Response of Intrinsic Common-Emitter Amplifier
- Effect of transistor parameters on f_T

Reading Assignment:

Howe and Sodini, Chapter 10, Sections 10.1-10.4

I. Frequency Response Review Phasor Analysis of the Low-Pass Filter

• Example:

• Replacing the capacitor by its impedance, 1 / (j ω C), we can solve for the ratio of the phasors V_{out}/V_{in}

$$\frac{V_{out}}{V_{in}} = \frac{1/j\omega C}{R+1/j\omega C}$$

$$\frac{V_{out}}{V_{in}} = \frac{1}{1 + j\omega RC}$$

• $V_{out} \equiv$ Phasor notation

Magnitude Plot of LPF

• V_{out} / V_{in} --> 1 for "low" frequencies • V_{out} / V_{in} --> 0 for "high" frequencies

- The "break point" is when the frequency is equal to $\omega_0 = 1 / RC$
- The break frequency defines "low" and "high" frequencies.
- $dB \equiv 20 \log x \longrightarrow 20 dB = 10, 40 dB = 100,$ -40 dB = .01
- At ω_0 the ratio of phasors has a magnitude of 3 dB.

Phase Plot of LPF

- Phase $(V_{out} / V_{in}) = 0^{\circ}$ for low frequencies
- Phase $(V_{out} / V_{in}) = -90^{\circ}$ high frequencies.

- Transition region extends from ω_0 / 10 to 10 ω_0
- At ω_0 Phase = -45°

Review of Frequency Domain Analysis Chap 10.1

II. Small Signal Models for Frequency Response

Bipolar Transistor

MOS Transistor - VSB = 0

- Replace C_{gs} for C_{π}
- Replace C_{gd} for C_{μ}
- Let $r_{\pi} \longrightarrow \infty$

III. Frequency Response of Intrinsic CE Current Amplifier $R_s \longrightarrow \infty \& R_I = 0$

Circuit analysis - Short Circuit Current Gain I₀/I_{in}

• KCL at the output node:

$$I_o = g_m V_\pi - V_\pi j \,\omega C_\mu$$

• KCL at the input node: $I_{in} = \frac{V_{\pi}}{Z_{\pi}} + V_{\pi} j \omega C_{\mu} \quad \text{where} \quad Z_{\pi} = r_{\pi} \left[\left(\frac{1}{j \omega C_{\pi}} \right) \right]$ • After Algebra $\frac{I_{o}}{I_{in}} = \frac{g_{m} r_{\pi} \left(1 - \frac{j \omega C_{\mu}}{g_{m}} \right)}{1 + j \omega r_{\pi} \left(C_{\pi} + C_{\mu} \right)} = \frac{\beta_{o} \left[1 - \frac{j \omega C_{\mu}}{g_{m}} \right]}{1 + j \omega r_{\pi} \left(C_{\pi} + C_{\mu} \right)} = \beta_{o} \left[\frac{1 - j \frac{\omega}{\omega_{z}}}{1 + j \frac{\omega}{\omega_{p}}} \right]$ $\omega_{Z} = \frac{g_{m}}{C_{\mu}} \qquad \omega_{p} = \frac{1}{r_{\pi} \left(C_{\pi} + C_{\mu} \right)}$

Bode Plot of Short-Circuit Current Gain

• Frequency at which current gain is reduced to 0 dB is defined at $f_{T_{c}}$

$$f_T = \left(\frac{1}{2\pi}\right) \frac{g_m}{\left(C_\pi + C_\mu\right)}$$

Gain-Bandwidth Product

When we increase β_o we increase r_π BUT we decrease the pole frequency---> Unity Gain Frequency remains the same

Examine how transistor parameters affect ω_{T}

• Recall

$$C_{\pi} = C_{je} + g_m \tau_F$$

• The unity gain frequency is

$$\omega_T = \frac{I_C / V_{th}}{(I_C / V_{th})\tau_F + C_{je} + C_{\mu}}$$

- At low collector current f_T is dominated by depletion capacitances at the base-emitter and base-collector junctions
- As the current increases the diffusion capacitance, $g_m \tau_F$, becomes dominant
- Fundamental Limit for the frequency response of a bipolar transistor is set by

$$\tau_{F} = \frac{W_{B}^{2}}{2Dn, p}$$

To Increase f_T

- High Current Diffusion capacitance limited -Shrink basewidth
- Low Current Depletion capacitance limited -Shrink emitter area and collector area - (geometries)