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Lecture 22
Frequency Response of Amplifiers (II)

VOLTAGE AMPLIFIERS

Outline

1. Full Analysis
2. Miller Approximation
3. Open Circuit Time Constant

Reading Assignment:
Howe and Sodini, Chapter 10, Sections 10.1-10.4
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Common Emitter Amplifier

• Operating Point Analysis
– vs=0, RS = 0, ro → ∞, roc → ∞, RL → ∞
– Find VBIAS such that IC=ISUP with the BJT in the 

forward active region
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Frequency Response Analysis of the
Common Emitter Amplifier

• Frequency Response
– Set VBIAS = 0.  
– Substitute BJT small signal model (with capacitors) 

including RS, RL, ro, roc

– Perform impedance analysis
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1. Full Analysis of CE Voltage Amplifier

Node 1:

Node 2:
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Replace voltage 
source and resistance 
with current source 
and resistance using 
Norton Equivalent
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Full Frequency Response Analysis (contd.)

Vout
Is

=
− ′ R in ′ R out gm − jωCµ( )

1+ jω ′ R outCµ + ′ R inCµ + ′ R inCπ + gm ′ R out ′ R inCµ( )− ω2 ′ R out ′ R inCµCπ

• Re-arrange 2 and obtain an expression for Vπ
• Substituting it into 1 and with some manipulation, we 

can obtain an expression for Vout / Is:

Vout

Vs

=
−gm ′ R out

rπ

RS + rπ
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⎠ 
⎟ 1− jω

Cµ

gm
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⎝ 
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⎞ 

⎠ 
⎟ 

1+ jω ′ R outCµ + ′ R inCµ 1+ gm ′ R out( )+ ′ R inCπ( )− ω 2 ′ R out ′ R inCµCπ

Changing input current source back to a voltage source:

Vout
Vs

=
Avo

1 + jωτ1( )1 + jωτ2( ) =
Avo

1 − jω τ1 + τ2( )− ω2τ1τ2

The  gain can be expressed as:

where Avo is the gain at low frequency and τ1 and τ2 are 
the two time constants associated with the capacitors

LocoS RrrrR ||||R and ||R where outin =′=′ π

We can ignore zero at gm/Cµ because it is higher than ωT.
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Then:

Denominator of the System Transfer Function 

τ1 + τ2 = ′ R outCµ + ′ R inCµ 1+ gm ′ R out( )+ ′ R inCπ

τ1 • τ2 = ′ R out ′ R inCµCπ

We could solve for τ1 and τ2 but is algebraically complex. 

•However, if we assume that τ1 >> τ2 ,⇒ τ1 + τ2 ≈ τ1. 
•This is a conservative estimate since the true τ1 is actually 
smaller and hence the true bandwidth is actually larger 
than:
τ1 ≈ ′ R in Cπ + Cµ 1 + gm ′ R out( )[ ]+ ′ R outCµ

ω3dB =
1
τ1

=
1

′ R in Cπ + Cµ 1+ gm ′ R out( )[ ]+ ′ R outCµ

Avo

1/τ1 1/τ2

Vout
Vs

dB− 20 decade

dB− 40 decade

ω
log scale
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2. The Miller Approximation

Effect of Cµ on the Input Impedance:

The input impedance Zi is determined by applying a test 
voltage Vt to the input and measuring It:

Vout = −gmVt ′ R out + It ′ R out

The Miller Approximation assumes that current through 
Cµ is small compared to the transconductance generator

It << gmVt

Vout ≈ −gmVt ′ R out

We can relate Vt and Vout by

Vt − Vout =
It

jωCµ

Cµ

gmVt R'out = ro ⎢⎢roc ⎢⎢RL Vout

+

−

Vt

It

+
−
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The Miller Approximation (contd.)
After some Algebra:
Vt
It

= Zeff =
1

jωCµ 1+ gm ′ R out( ) =
1

jωCµ 1 − AvCµ( )
The effect of Cµ at input is that Cµ is “Miller multiplied”
by (1-AvCµ) 

Generalized “Miller Effect”

Zeff =
Z

1− Avo( )

• An impedance connected across an amplifier with 
voltage gain Avo can be replaced by an an impedance 
to ground … divided by (1-Avo)

• Avo is large and negative for common-emitter and 
common-source amplifiers

• Capacitance at input is magnified.
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 Zeff  = Z /(1 − Avo)
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Frequency Response of the CE Voltage 
Amplifier Using Miller Approximation

• The Miller capacitance is lumped together with Cπ, 
which results in a single pole low pass filter at the 
input

Vout
Vs

= − gm
rπ

rπ + RS
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1 + jω Cπ + CM( ) RS || rπ( )
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• At low frequency (DC) the small signal voltage gain is
Vout
Vs

= −gm
rπ

rπ + RS
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⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ′ R out

• The frequency at which the magnitude of the voltage 
gain is reduced by 1/√2 is 

ω3dB =
1

Rs || rπ( ) Cπ + CM( ) =
1

Rs || rπ( )
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3. Open Circuit Time Constant Analysis
Assumptions:
• No zeros
• One “dominant” pole (1/τ1 <<  1/τ2 , 1/τ3 … 1/τn )
• N capacitors

It can be shown that the coefficient b1 can be found 
exactly [see Gray & Meyer, 3rd Edition, pp. 502-506]

Vout
Vs

=
Avo

1 + jωτ1( )1 + jωτ2( )1 + jωτn( )
The example shows a voltage gain; however, it could be 
Iout/Vs or Vout/Is.

Vout
Vs

=
Avo

1 + b1 jω( )+ b2 jω( )2 + ... + bn jω( )n

where b1 = τ1 + τ2 + τ3 +….+ τn

Multiplying out the denominator:

b1 = RTiCi
i=1

N
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = τCio

i

N
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

• τCio is the open-circuit time constant for capacitor Ci
• Ci is the ith capacitor and RTi is the Thevenin 

resistance across the ith capacitor terminals (with all 
capacitors open-circuited)
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Open Circuit Time Constant Analysis

• Estimates the contribution of each capacitor to the 
dominant pole frequency separately

• Enables the designer to understand what part of a 
complicated circuit is responsible for limiting the 
bandwidth of amplifier

• The approximate magnitude of the Bode Plot is

Power of the Technique:

Estimating the Dominant Pole

b1 = τ1 + τ2 + τ3 +….+ τn

b1 = RTiCi
i=1

N
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ≈ τ1 =

1
ω1

The dominant pole of the system can be estimated by:

RTiCi is the open-circuit time constant for capacitor Ci
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Common Emitter Amplifier Analysis 
Using OCT

Vout
Vs

=
−gm ′ R out

rπ
RS + rπ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 1− jω

Cµ
gm

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1+ jω ′ R outCµ + ′ R inCµ 1+ gm ′ R out( )+ ′ R inCπ( )−ω2 ′ R out ′ R inCµCπ

From the Full Analysis

where ′ R in = RS || rπ  and ′ R out = ro || roc || RL

b1 = ′ R out Cµ + ′ R inCµ 1 + gm ′ R out( )+ ′ R inCπ

ω3dB ≈ 1
b1

= 1
′ R outCµ + ′ R inCµ 1+ +gm ′ R out( )+ ′ R inCπ
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Common Emitter Amplifier Analysis 
Using OCT—Procedure
1. Eliminate all independent sources [e.g. Vs → 0]
2. Open-circuit all capacitors
3. Find the Thevenin resistance by applying it and 

measuring vt.

Time Constant for Cπ

Result obtained by inspection

RTπ = RS || rπ
τCπo

= RTπCπ
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Common Emitter Amplifier Analysis 
Using OCT—Time Constant for Cµ

Using the same procedure

Eliminate vπ:
− it =

vπ
′ R in

it =
vt + vπ

′ R out
+ gmvπ

Let ′ R in = RS || rπ  and ′ R out = ro || roc || RL

vt
it

= RTµ = ′ R out + ′ R in 1 + gm ′ R out( )

τCµo
= RTµCµ = ′ R out + ′ R in 1 + gm ′ R out( )[ ]Cµ
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Common Emitter Amplifier Analysis 
Using OCT—Dominant Pole

Summing individual time constants

b1 = ′ R out Cµ + ′ R inCµ 1 + gm ′ R out( )+ ′ R inCπ

ω3dB ≈ 1
b1

= 1
′ R outCµ + ′ R inCµ 1+ gm ′ R out( )+ ′ R inCπ

b1 = ′ R out Cµ + ′ R inCµ 1 + gm ′ R out( )+ ′ R inCπ

b1 = RTπCπ + RTµCµ

Assume τ1 >> τ2

b1 = τ1 + τ2 ≈ τ1

This result is very similar to the Miller Effect calculation
Additional term R’

outCµ taken into account
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Compare the Three Methods of Analyzing 
the Frequency Response of CE Amplifier

Full Analysis—

Miller Approximation—

Open Circuit Time Constant—

ω3dB ≈
1
b1

=
1

′ R outCµ + ′ R inCµ 1+ gm ′ R out( )+ ′ R inCπ

ω3dB =
1
′ R in

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1
Cπ + 1 + gm ′ R out( )Cµ

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

ω3dB ≈
1
τ1

=
1

′ R outCµ + ′ R inCµ 1 + gm ′ R out( )+ ′ R inCπ
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What did we learn today?

Summary of Key Concepts

• Full Analysis
– Assumes that τ1 + τ2 ≈ τ1

• Miller Approximation
– Does not take into account R’out

• Open Circuit Time Constant (OCT)
– Assumes a dominant pole as full analysis

ω3dB ≈
1
τ1

=
1

′ R outCµ + ′ R inCµ 1 + gm ′ R out( )+ ′ R inCπ

ω3dB =
1
′ R in
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⎣ 
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⎦ 
⎥ 

1
Cπ + 1 + gm ′ R out( )Cµ

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

ω3dB ≈
1
b1

=
1

′ R outCµ + ′ R inCµ 1+ gm ′ R out( )+ ′ R inCπ


