Lecture 6

PN Junction and MOS Electrostatics(III) <u>Metal-O</u>xide-<u>S</u>emiconductor Structure

Outline

- 1. Introduction to MOS structure
- 2. Electrostatics of MOS in thermal equilibrium
- 3. Electrostatics of MOS with applied bias

Reading Assignment: Howe and Sodini, Chapter 3, Sections 3.7-3.8

1. Introduction

Metal-Oxide-Semiconductor structure

MOS at the heart of the electronics revolution:

- Digital and analog functions
 - Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is key element of Complementary Metal-Oxide-Semiconductor (CMOS) circuit family
- Memory function
 - Dynamic Random Access Memory (DRAM)
 - Static Random Access Memory (SRAM)
 - Non-Volatile Random Access Memory (NVRAM)
- Imaging
 - Charge Coupled Device (CCD) and CMOS cameras
- Displays
 - Active Matrix Liquid Crystal Displays (AMLCD)

- Metal: does not tolerate volume charge
 - \Rightarrow charge can only exist at its surface
- Oxide: insulator and does not have volume charge
 ⇒ no free carriers, no dopants
- Semiconductor: can have volume charge
 - \Rightarrow Space charge region (SCR)

In thermal equilibrium we assume Gate contact is shorted to Bulk contact. (i. e, $V_{GB} = 0V$)

For most metals on p-Si, equilibrium achieved by electrons flowing from metal to semiconductor and holes from semiconductor to metal:

Remember: n_op_o=n_i²

• In semiconductor: space-charge region close Si /SiO₂ interface

- can use *depletion approximation*

- In metal: sheet of charge at metal /SiO₂ interface
- Overall charge neutrality

Electric Field

Integrate Poisson's equation

$$E_o(x_2) - E_o(x_1) = \frac{1}{\varepsilon} \int_{x_1}^{x_2} \rho(x') dx$$

At interface between oxide and semiconductor, there is a change in **permittivity** \Rightarrow change in electric field

$$\varepsilon_{ox}E_{ox} = \varepsilon_s E_s$$

Start integrating from deep inside semiconductor:

Electrostatic Potential

(with $\phi = 0 @ n_o = p_o = n_i$)

$$\phi = \frac{kT}{q} \bullet \ln \frac{n_o}{n_i} \qquad \phi = -\frac{kT}{q} \bullet \ln \frac{p_o}{n_i}$$

In QNRs, n_o and p_o are known \Rightarrow can determine ϕ

in p-QNR:
$$p_o = N_a \Rightarrow \phi_p = -\frac{kT}{q} \cdot \ln \frac{N_a}{n_i}$$

in n⁺-gate: $n_o = N_d^+ \Rightarrow \phi_g = \phi_{n^+}$

Built-in potential:

$$\phi_B = \phi_g - \phi_p = \phi_{n^+} + \frac{kT}{q} \cdot \ln \frac{N_a}{n_i}$$

6.012 Spring 2007

Still do not know $x_{do} \Rightarrow$ need one more equation

Potential difference across structure has to add up to ϕ_B :

$$\phi_{B} = V_{B,o} + V_{ox,o} = \frac{qN_{a}x_{do}^{2}}{2\varepsilon_{s}} + \frac{qN_{a}x_{do}t_{ox}}{\varepsilon_{ox}}$$

Solve quadratic equation:

$$x_{do} = \frac{\varepsilon_{s}}{\varepsilon_{ox}} t_{ox} \left[\sqrt{1 + \frac{2\varepsilon_{ox}^{2} \phi_{B}}{q \varepsilon_{s} N_{a} t_{ox}^{2}}} - 1 \right]$$
$$= \frac{\varepsilon_{s}}{C_{ox}} \left[\sqrt{1 + \frac{2C_{ox}^{2} \phi_{B}}{q \varepsilon_{s} N_{a}}} - 1 \right]$$

where C_{ox} is the capacitance per unit area of oxide

$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$$

Now problem is completely solved!

There are also contact potentials

\Rightarrow total potential difference from contact to contact is zero!

3. MOS with applied bias V_{GB}

Apply voltage to gate with respect to semiconductor:

Electrostatics of MOS structure affected \Rightarrow potential difference across entire structure now $\neq 0$

How is potential difference accommodated?

Potential difference shows up across oxide and SCR in semiconductor

Oxide is an insulator \Rightarrow no current anywhere in structure

In SCR, quasi-equilibrium situation prevails \Rightarrow New balance between drift and diffusion

- Electrostatics qualitatively identical to thermal equilibrium (*but amount of charge redistribution is different*)
- $np = n_i^2$

Apply $V_{GB}>0$: potential difference across structure increases \Rightarrow need larger charge dipole \Rightarrow SCR expands into semiconductor substrate:

Simple way to remember:

with V_{GB} >0, gate attracts electrons and repels holes.

Qualitatively, physics unaffected by application of $V_{GB} > 0$. Use mathematical formulation in thermal equilibrium, but:

$$\phi_B \to \phi_B + V_{GB}$$

For example, to determine $x_d(V_{BG})$:

$$\phi_B + V_{GB} = V_B(V_{GB}) + V_{ox}(V_{GB})$$

$$= \frac{qN_a x_d^2(V_{GB})}{2\varepsilon_s} + \frac{qN_a x_d(V_{GB})t_{ox}}{\varepsilon_{ox}}$$

$$x_d(V_{GB}) = \frac{\varepsilon_s}{C_{ox}} \left[\sqrt{1 + \frac{2C_{ox}^2(\phi_B + V_{GB})}{\varepsilon_s qN_a}} - 1 \right]$$

$$\phi(0) = \phi_s = \phi_p + \frac{qN_a x_d^2(V_{GB})}{2\varepsilon_s}$$

 ϕ_s gives n & p concentration at the surface

What did we learn today?

Summary of Key Concepts

- Charge redistribution in MOS structure in thermal equilibrium
 - SCR in semiconductor
 - \Rightarrow built-in potential across MOS structure.
- In most cases, we can use depletion approximation in semiconductor SCR
- Application of voltage modulates depletion region width in semiconductor
 - No current flows