LIMITS TO COMPUTATION SPEED

Devices:
- Emitter
- Drain
- Gate
- Field-effect transistors
- Beyond scope of subject (e.g. 6.012)

Interconnect:
- Speed of light $= 3 \times 10^8$ meters/sec
- Say CPU and memory separated by 10 cm
- $2 \times 0.1/(3 \times 10^8) = 0.7$ nsec round-trip delay
- $\Rightarrow <1.5$ Gops without pipelining, but matters are worse

1) $c = (\varepsilon_0 \mu_0)^{0.5}$ where c might be $\sim 2c_0$
2) Reflections may occur at changes in wire dimensions and at device junctions
3) Wire resistance can slow speeds, too

SIMPLE INTERCONNECTIONS

Transverse EM Transmission Lines:
- TEM: $E_z = H_z = 0$
- Coaxial cable
- Parallel plates
- Stripline
- Wires
- Arbitrary shape if cross-section not $= f(z)$
PARALLEL-PLATE TRANSMISSION LINE

Boundary Conditions:

\[E_{||} = H_{\perp} = 0 \quad \text{at perfect conductors} \]

Uniform plane wave along \(z \)

satisfies boundary conditions

Wave Equation Solution:

Recall: \(\vec{E} = \hat{x}E_0 \cos(\omega t - kz) = \hat{x}E_0 \cos(\omega(t - z/c)) \) for an \(x \)-polarized wave

at \(\omega \) radians/sec propagating in the +z direction in free space

\((k = \omega/c = 2\pi/\lambda) \)

\[\vec{H} = \hat{y}(E_0/\mu_0) \cos(\omega t - kz) \] for the same wave

PARALLEL-PLATE TRANSMISSION LINE (2)

Currents in Plates:

\[\int_C \vec{H} \cdot d\vec{s} = \int_A \vec{J} \cdot d\vec{a} = I(z) \]

= \(H_w \) independent of path

Surface Currents \(K_s \) (a m\(^{-1}\)):

Boundary conditions:

\[K_s(z) = \hat{n} \times H(z) \quad \text{amperes/meter} \]

[since \(K_s = |\nabla \times H = 0 \) (from above); \(H_{AC} = 0 \) in conductor]
PARALLEL-PLATE TRANSMISSION LINE (3)

Volatges Across Plate:

\[\int \mathbf{E} \cdot d\mathbf{s} = \Phi_1 - \Phi_2 = V(z) \]

Since all \(\int_c \mathbf{E} \cdot d\mathbf{s} = 0 \) at fixed \(z \) because \(H_2 = 0 \),

Therefore, \(\int_1^2 \mathbf{E} \cdot d\mathbf{s} = V(z) \) and \(V(z) \) is uniquely defined.

Surface Charges (Coulombs/m²):

Boundary conditions: \(\mathbf{E} \cdot \mathbf{n}(z) = \sigma_S(z) \)

since \(\nabla \cdot \mathbf{D} = \rho \) and \(\int_S \mathbf{E} \cdot \mathbf{n} \, da = \int_V \rho \, dv = A \sigma_S \) for \(A \) (surface area).

VOLTAGE AND CURRENT ON TEM LINES

Integrate \(\mathbf{E}, \mathbf{H} \) to find \(v(z,t), i(z,t) \)

Voltage \(v(z) \) on TEM Lines:

Recall:

\(\mathbf{E} = \hat{x} E_0 \cos(\omega t - kz) \) for an \(x \)-polarized wave

at \(\omega \) radians/sec propagating in the +z direction

\(v(z) = \int_1^2 \mathbf{E} \cdot d\mathbf{s} = E_0 d \cos(\omega t - kz) \) for our example

Currents \(i(z) \) on TEM Lines:

Recall: \(\mathbf{H} = \hat{y} (E_0/\eta_0) \cos(\omega t - kz) \) for the same wave

\(i(z) = \int_c \mathbf{H} \cdot d\mathbf{s} = (E_0 w/\eta_0) \cos(\omega t - kz) \)

Note: \(v(z) \) violates KVL, and \(i(z) \) violates KCL, why?

[Note \(\partial \mathbf{B}/\partial t \) through \(\mathbf{E} \) loop, and \(\partial \mathbf{D}/\partial t \) into plates]

Note: \(v(z,t)/i(z,t) = \eta_0 d/w \) ohms for +z wave alone
TELEGRAPHER’S EQUATIONS

Equivalent Circuit:

\[\begin{align*}
&L \Delta z + C \Delta z = i(t, z) + i(t, z + \Delta z) \\
&C \Delta z + C \Delta z = v(t, z) + v(t, z + \Delta z)
\end{align*} \]

\[E \cdot \Delta z = H \cdot \Delta z = 0 \]

Difference Equations:

\[\begin{align*}
v(z + \Delta z) - v(z) &= -L \Delta z \frac{di(z)}{dt} \\
i(z + \Delta z) - i(z) &= -C \Delta z \frac{dv(z)}{dt}
\end{align*} \]

\[[Q = CV] \]

Limit as \(\Delta z \to 0 \):

\[\begin{align*}
&dv(z)/dz = -L \frac{di(z)}{dt} \\
di(z)/dz = -C \frac{dv(z)}{dt}
\end{align*} \]

\[\implies \text{Wave Equation} \]

\[d^2v/dz^2 = LC \frac{dv}{dt}^2 \]

\[d^2i/dz^2 = LC \frac{di}{dt}^2 \]

SOLUTION: TELEGRAPHER’S EQUATIONS

Wave Equation:
\[d^2v/dz^2 = LC \frac{dv}{dt}^2 \]

Solution:

\[v(z,t) = f_+(t - z/c) + f_-(t + z/c) \]

\(f_+ \) and \(f_- \) are arbitrary functions

Substituting Into Wave Equation:

\[\frac{1}{c^2}[f_+^{''}(t - z/c) + f_-^{''}(t + z/c)] = LC[f_+^{''}(t - z/c) + f_-^{''}(t + z/c)] \]

Therefore

\[c = 1/\sqrt{LC} = 1/\sqrt{\mu_0} \]

Current \(i(z,t) \)

Recall:

\[di(z)/dz = -C \frac{dv(z)}{dt} = -C[f_+(t - z/c) + f_-^{'}(t + z/c)] \]

Therefore:

\[i(z,t) = cC[f_+(t - z/c) - f_-(t + z/c)] \]

where

\[cC = C/\sqrt{LC} = \sqrt{C/L} = Y_0 = 1/Z_0 \]

"characteristic admittance"

And therefore:

\[i(z,t) = Y_0[f_+(t - z/c) - f_-(t + z/c)] \]