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6.014 Lecture 14: 
Microwave Communications and Radar 

 
 
A. Overview 
 
 Microwave communications and radar systems have similar architectures.  They 
typically process the signals before and after they are transmitted through space, as 
suggested in Figure L14-1.  Conversion of the signals to electromagnetic waves occurs at 
the output of a power amplifier, and conversion back to signals occurs at the detector, 
after reception.  Guiding-wave structures connect to the transmitting or receiving 
antenna, which are generally one and the same in monostatic radar systems. 
 

We have discussed antennas and multipath propagation earlier, so the principal 
novel mechanisms we need to understand now are the coupling of these electromagnetic 
signals between antennas and circuits, and the intervening propagating structures.  Issues 
we must yet address include transmission lines and waveguides, impedance 
transformations, matching, and resonance.  These same issues also arise in many related 
systems, such as lidar systems that are like radar but use light beams instead, passive 
sensing systems that receive signals emitted by the environment either naturally (like 
thermal radiation) or by artifacts (like motors or computers), and data recording systems 
like DVD’s or magnetic disks. 

 
The performance of many systems of interest is often limited in part by our ability 

to couple energy efficiently from one port to another, and our ability to filter out 
deleterious signals.  Understanding these issues is therefore an important part of such 
design effors.  The same issues often occur in any system utilizing high-frequency 
signals, whether or not they are transmitted externally. 
 
 
B. Radar, Lidar, and Passive Systems 
 
 Figure L14-2 illustrates a standard radar or lidar configuration where the 
transmitted power Pt is focused toward a target using an antenna with gain Gt.  At range r 
[meters] the radiated intensity at the target It is: 
 
  It = GtPt/4πr2  [Wm-2] (1) 
 
Some part of this is scattered by the target and received again at the radar. We define the 
target scattering cross-section σs as the cross-section [m2] that would produce the 
observed echo strength if the scattering were isotropic.  That is, the scattered intensity 
sensed back at the radar Ir is: 
 
  Ir = It σs/4πr2  [Wm-2] (2) 
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 The power received by the radar Pr [W] is then: 
 
  Pr  =  Ar Ir  =  Ar (GtPt/4πr2)(σs/4πr2) =  Ar GtPtσs/(4πr2)2  (3) 
 
where Ar [m2] = Gtλ2/4π  is the effective area of the receiving antenna.  Therefore, 
 
  Pr  =  Pt σs (Gtλ/4πr2)2/4π  [Watts] (4) 
 
This is one form of the radar equation.  If atmospheric attenuation due to water vapor, 
rain, or other causes is important, then its round-trip effects must also be added to (4). 
 
 It is important to note that the scattering cross-section σs approximates the 
physical cross-section of the target if the target is large compared to a wavelength and 
scatters the incident radiation roughly isotropically with little absorption.  If the target 
absorbs the radiation or scatters it preferentially in directions other than the receiver, then 
σs is smaller.  If, however, the target scatters the radiation preferentially toward the 
transmitter, then σs can be substantially larger than the physical cross-section.  For 
example, metallic corner reflectors on boats are designed to enhance their radar cross-
section so they can be more easily seen and avoided by other ships at sea.  Corner 
reflectors comprise three flat mirrors that make a corner at right angles, so that the 
reflected ray retraces the path of the incident ray (because of geometry and the fact that 
the angle of incidence equals the angle of reflection). 
 
 
 
 Typical radars measure the strength of echos, their round-trip travel time (which 
indicates range), and their Doppler shift (which indicates ± target velocity toward the 
radar). 
 
 A simple example is given in L11-3, where we assume a powerful radar is 
looking for killer asteroids that could wreak havoc on Earth.  The problem is to determine 
the maximum range at which an echo could be detected above the thermal noise that 
typically dominates microwave systems looking out toward space.  In this example, the 
transmitter power is one megawatt (very large), the radar antenna gain is 108 (also very 
large), the wavelength is 10 cm, the assumed asteroid scattering cross-section is 104 [m2], 
and the required received power is the same as the thermal noise power within the same 
bandwidth, kTsB watts, where k is Boltzmann’s constant (~1.38×10-22), Ts is the system 
noise temperature (sometimes comparable to its physical temperature), and B is the signal 
and system bandwidth in Hz.  The example assumes the system noise temperature is 10K, 
which is excellent, and that the system bandwidth is one Hertz, which is quite narrow.  
Solving the radar equation (4) for range r, we find that it is ~4×107 km, or roughly one 
third the distance from the Earth to the sun (called an Astronomical Unit, or A.U.).  If the 
closing velocity between the asteroid and Earth approximates the velocity of the Earth in 
its orbit about the sun, then this corresponds to approximately 2 or 3 weeks warning.  
Modern optical systems could give still earlier indications, and so they are currently the 
detection means of choice. 
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 Slide L14-3 also presents an example involving detection of a thermal target that 
simply emits detectable black-body radiation in proportion to its physical temperature To.  
Any communications or radar system constantly receives such radiation from the 
environment in proportion to the average temperature of the scene it is viewing.  Thus a 
satellite communications receiver viewing a ground station would receive thermal 
radiation from the earth in accord with the average temperature of the terrain near that 
ground station, so To might be 270K, for example.  Since this is large compared to the 
noise typically contributed by the receiver itself, environmental thermal noise often 
dominates such communications links. 
 
 Because receivers that measure incident power can average much data, their rms 
sensitivity can be impressive.  For example1, a receiver measuring the average power in a 
signal of B Hz bandwidth might sample that signal at 2B samples/second (the Nyquist 
rate), and then average for τ seconds, yielding 2Bτ independent measures of signal 
power.  Averaging independent power measurements reduces the uncertainty by the 
square root of the number of samples averaged.  If we wish to measure the temperature of 
300K terrain with a receiver having a noise temperature of 200K, the total noise 
temperature Ts (noise power = kTs Watts/Hz) is 500K and the rms sensitivity of the 
receiver is then approximately 500/(τB)0.5.  A typical averaging time τ might be one 
second, and the bandwidth might be 100 MHz.  In this case the rms sensitivity would be 
(500/1×108)0.5 = 0.05K, a tiny fraction of the 300K signal of interest.  Such systems in 
earth orbit currently measure average atmospheric temperatures with accuracies of 
hundredths of a degree and are quite sensitive to global warming trends.  Medical 
applications have also been developed. 
 
 
C. Guided Waves 
 
 Slide L14-4 suggests the most common ways radio or optical signals are 
conveyed from point to point, other than in TEM structures such as those discussed in 
Lecture 12.  First, waves can propagate in free space, and can be launched and 
intercepted using antennas.  Such waves can also be bounced back and forth between flat 
conductors as illustrated in L14-4A, although if the wavelength λ is too long (λ>d/2) 
compared to the plate separation d, the wave decays rather than propagating.  This 
structure is called a parallel-plate waveguide.  This bouncing method also works inside 
rectangular waveguides, where the waves bounce both vertically and horizontally, again 
limited by the requirement that λ be sufficiently small relative to the waveguide 
dimensions.  Several different propagating wave patterns are possible in waveguides, 
each of which is called a waveguide mode.  These modes can be considered to be 
standing wave patterns in the lateral dimension, while they propagate longitudinally up or 
down the waveguide.  Each mode has its own minimum frequency of propagation, called 
the cutoff frequency. 
 

                                                
1 This example is presented for illustration only, and not for mastery. 
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 Waves bounce well not only off metal walls, but also when they are inside 
dielectric slabs and are incident upon the air interface at angle θi beyond their critical 
angle θc, as suggested in Figure L14-4B.  Such guides are called dielectric-slab 
waveguides.  Dielectric waveguides for guiding light are cylindrical and are called optical 
fibers.  Their wave-trapping mechanism is the same as for dielectric slab waveguides, 
except that the field solutions are Bessel functions rather than sines, cosines, and 
exponentials. 
 
 
D. Impedance and Impedance Transformations 
 
 If we represent voltages and currents at frequency ω on any transmission line by 
the phasors V(z) and I(z), then we can define the complex impedance 
 
  Z(z) = V(z)/I(z) ohms (5) 
 
where z is position along the line.  In the case of waveguides or optical fibers, which do 
not have voltages or currents per se, we equivalently speak of electric and magnetic field 
strengths instead, and the same impedance transformation processes occur.  We shall 
focus first on TEM lines because of their relative simplicity. 
 
 We define, in the same format as before, 
 
  v(t) = Re{V ejωt},      i(t) = Re{I ejωt} (6) 
 
and note that, as in the case of uniform plane waves, we generally have both forward- and 
backward- propagating waves superimposed on the line.  The total voltage and current 
can then be described as: 
 
  V(z) = V+e-jkz + V-e+jkz  [volts] (7) 
 
  I(z) = Yo (V+e-jkz - V-e+jkz) [volts] (8) 
 
where the characteristic line admittance Yo = (L/C)0.5 Siemens (ohm-1), as before; L and 
C are the line inductance and capacitance per meter, respectively.  The minus sign in the 
current expression (8) is appropriate because if V- is positive for a backward propagating 
wave, then the current corresponding to it (-YoV-e+jkz) must flow in the –z direction. 
 
 It follows from (7) and (8) that the effective impedance (which is usually not the 
characteristic line impedance Zo = Yo

-1) is: 
 
 Z(z) = Zo(V+e-jkz + V-e+jkz)/ (V+e-jkz - V-e+jkz) = Zo(1+Γ(z))/(1-Γ(z)) (9) 
 
where Γ(z) is the complex reflection coefficient, defined as: 
 
  Γ(z) = (V-/V+)e2jkz (10) 
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 The behavior permitted by (9) is not immediately obvious, and will be discussed 
later.  One interesting simple result is that if any transmission line is losslessly 
terminated, for example by a short or open circuit, then Z(z) = ±jX, where X can be any 
positive or negative real number depending on the distance from the line termination.  
This ability to obtain any desired reactance (at a single ω) gives us the ability to build 
complex resonating and tuning circuits using only transmission lines.  Since transmission 
lines can be printed on integrated circuits like any other wires over insulators, this 
capability is significant. 
 
 Another important example is our ability to take an arbitrary circuit, such as the 
one illustrated in Figure L14-5, and match the source to the load so that all the available 
power from the source is dissipated in the load without reflections (i.e. V- is zero).  In this 
case we have an arbitrary RL load, and add a purely reactive lossless element such as the 
capacitor C or a different inductor L′ at a well chosen distance from the load to obtain a 
match.  We can also match the load by inserting before the load a segment of 
transmission line that has a different well chosen characteristic impedance and length. 
 
E. Junctions and Modal Coupling 
 
 Where transmission lines meet we have a junction, as illustrated in Figure L14-6.  
This occurs, for example, at junctions between waveguides and antenna feeds, different 
waveguides, and coaxial cables and waveguides.  They also occur in optical or 
microwave integrated circuits, where the guides also have juctions with active elements.  
At these junctions the electric and magnetic fields store energy.  If the time average 
electric energy at a junction exceeds the time average magnetic energy, then we have the 
equivalent of a parasitic capacitance; if the energy balance is reversed, then we have a 
parasitic inductance.  These parasitic reactances can be tuned out as suggested in Section 
D above. 
 
 The number of electromagnetic junctions can be greater than the number of 
physical junctions.  That is, a single waveguide can propagate energy in more than one 
mode, where each waveguide mode typically has its own characteristic impedance and 
phase velocity.  When two such guides join, every mode can couple energy to every other 
mode, so such junctions can be characterized by scattering matrices S that reveal the 
changes in magnitude and phase that occur for every possible input-output modal 
combination.  These S are related 1:1 to impedance matrices Z.  In practice we generally 
design such junctions so that each guide at all frequencies of operation propagates only 
one mode.  Alternatively the junction is designed so that each undesired mode is 
orthogonal to all other modes and to the junction symmetry so that it cannot be excited.  
We shall not further address these matrices or this more complex case. 
 
F. Resonance and Resonators 
 
 The most familiar resonators are those comprising a resistor R, capacitor C, and 
inductor L.  If these three elements are placed in series, as suggested in Figure L11-7, 



  2/26 

 - 6 –

then at resonant frequency ωo = (LC)-0.5 the reactance of the inductor jωL cancels the 
reactance of the capacitor 1/jωC when they are added, so that the total impedance of the 
series combination is just the resistance R.  As ω approaches infinity, so does the 
impedance of the inductor, and as ω approaches zero, the impedance of the capacitor now 
approaches infinity.  Thus |Z(ω)| has a minimum at ω = ωo, as illustrated.  If R, L, and C 
are connected in parallel, the admittance of the combination approaches R-1 at ω = ωo 
because the admittance of the inductor 1/jωL cancels that of the capacitor jωC when they 
are added.  The maximum impedance of this parallel resonator is R, and it approaches 
zero as ω is increased or decreased, as illustrated. 
 
 The width of the resonance ∆ω depends on the relations between R, L, and C (see 
Figure L11-7A).  As R diminishes, this width ∆ω [radians s-1] also diminishes, and the 
quality Q of the resonance increases, where Q = ωo/∆ω.  All isolated resonances can be 
well characterized by ωo, ∆ω, and R at ωo. 
 
 If such a resonator is connected to the end of a TEM transmission line as 
illustrated, then its impedance R at resonance may or may not match Zo, the characteristic 
line impedance.  If it does match at ωo, we say the resonator is critically coupled and it 
absorbs all the incident energy. 
 
 Most transmission lines in circuits can also exhibit resonances at certain 
frequencies.  For example, consider the TEM resonator illustrated in L14-7, which is 
short circuited at one end and open circuit at the other.  Since propagating waves can not 
escape from the line, the amplitudes of monochromatic waves moving right must equal 
those of the waves moving left, and we have perfect standing waves.  At certain positions 
along the line there will be voltage nulls, and at other positions there will be current nulls.  
Clearly there must be a current null at the open-circuited end and a voltage null at the 
short circuit.  These constraints limit the wavelengths λ that can exist in this structure.  
For example, as illustrated, the complex voltage |V(z)| on the line must be zero at the left 
end and maximum at the right.  A resonant frequency in this case has any wavelength λn 
that satisfies the equation: 
 
  λn = 4D/(2n-1),   n = 1, 2, 3,… (11) 
 
where D is the length of the TEM line.  That is, the length of this line D must be an odd 
number of quarter wavelengths λn/4. The corresponding resonance frequencies are fn = 
c/λn Hz 
 
 The same considerations suggest that the resonant wavelengths for TEM lines 
open-circuited or short-circuited at both ends would be λn = D/n where n = 0, 1, 2,…  
corresponding to fn = nc/D Hz.  The value n = 0 corresponds to zero frequency, which is 
indeed a resonant frequency in these two cases.  An open-circuited line can store energy 
at zero frequency by simply having a static voltage between the two wires, and a short-
circuited line can store magnetic energy by having a constant current flowing around the 
loop through the two wires. 


