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6.014 Lecture 20: 
Micro-ElectroMechanical Systems (MEMS) 

 
A. Overview 
 

 One of the current major revolutions in electrical engineering involves the 
extension of integrated circuit technology to fabrication of micro-electromechanical 
systems (MEMS) as independent components and also as elements integrated on the 
same substrate as the integrated circuits with which they interoperate.  Significant 
advances in cost and/or functionality have already been achieved with MEMS 
incorporating optical switches, radio-frequency switches, microphones, accelerometers, 
thermometers, pressure sensors, chemical sensors, micro-fluidic systems, electrostatic 
and magnetic motors, biological sensors, and others.  MEMS devices have been used in 
everything from video projectors to automobile air bag triggers and mechanical digital 
memories for hot environments.  Figure L20-1 illustrates two common configurations—a 
cantilever actuator or sensor, and a rotary electrostatic motor. 
 
 The size of MEMS devices ranges from the micron or sub-micron scale up to one 
or more millimeters, although the basic electromagnetic principles apply to devices of 
any scale.  Recent advances in micro-fabrication techniques, such as new lithography and 
etching techniques, precision micro-molds, and laser cutting and chipping tools, have 
simplified exploiting MEMS technology. 
 
 Efficient motors and actuator configurations also generally can work as sensors.  
The first example explored below is that of a parallel-plate capacitor where the charged 
plates are electrically attracted and can do work as they squeeze together.  Conversely, 
the same plates can be mechanically forced apart so as to charge a battery.  Two different 
ways to calculate these forces are explored below: use of the Lorentz force equation and 
use of system-energy derivatives with respect to distance. 
 
 
Lorentz Forces 
 
 The Lorentz force law expresses the force vectorf acting on a charge q 
[Coulombs].  The force is a function of the local electric fieldE, magnetic fieldH, and 
the charge velocity vectorv [ms-1]: 
 
   f = q(E +v × µoH)  [Newtons] (1) 
 
 A cathode-ray tube (CRT) provides a simple example of this law, as illustrated in 
Figure L20-1, where electrons thermally excited by a heated cathode escape at low 
energy into a vacuum.  There the electric fieldE between anode and cathode draw it 
toward the anode at accelerationa [ms-2], as governed by Newton's law: 
 
   f = ma (2) 
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where m is the mass of the accelerating electron.  The kinetic energy of the electron wk is 
the accumulated work done on it by the electric fieldE.  That is, the increased energy of 
the electron is the product of the force f acting on it and the distance D the electron 
moved while experiencing that force.  If D is the separation between anode and cathode, 
then: 
 
   wk = fD = (eV/D)D = eV [J] (3) 
 
Thus the kinetic energy acquired by the electron in moving through the potential 
difference V is eV Joules.  If V = 1 volt, then wk is one "electron volt", or "e" Joules, 
where e ≅ 1.6 × 10-19 Coulombs.  Typical values for V in television CRT's are 25,000 
volts or more.  This voltage is limited in part by the desire not to generate excessive x-
rays as the electrons impact the phosphors on the CRT faceplate, which is often leaded 
glass designed to reduce x-ray release. 
 
 Figure L20-2b illustrates how lateral electric fields can deflect electron beams in 
CRT's so as to scan the beam across the faceplate, "painting" the image to be displayed.  
At higher tube voltages the electrons move so quickly that they do not sufficiently 
experience the lateral forces, and magnetic deflection is used instead because the lateral 
magnetic forces increase with v and are then greater. 
 
 Static electric forces on capacitor plates can also be calculated using the Lorentz 
force equation (1), which becomesf = qE.  To compute the total attractive force on 
each plate we must sum the forces acting on all the charges.  If we assume the surface 
charge on the plates is distributed over some infinitesimal depth δ, as illustrated in Figure 
L20-3b, then the electric fieldE diminishes to zero at that depth δ. E must go to zero 
when ρ = 0 because there can be noE in a perfect conductor unless ∇ • εE = ρ ≠ 0.  It 
is easy to see that if the charge density is uniform over the depth δ, then E declines 
linearly with depth to zero.  The average electric field acting on each charge then has half 
the maximum field strength E, and the total force pulling on the plate is therefore QE/2, 
where Q is the total charge on the plate.1 
 
 The force f on each capacitor plate, 
 
   f = QE/2  [N] (4) 
 
can be expressed in terms of E alone, using the boundary condition at a perfect 
conductor: 
 
   εE = ρs [Coulombs m-2] (5) 
 
which follows from ∇ • εE = ρ.  Multiplying (5) by A we obtain εEA = Q, and from (4) 
we obtain f = εE2A/2, and a force density F Newtons per square meter: 

                                                
1 This can be shown for any charge distribution ρ(z) varying with depth z. 
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   F = εE2/2  [Nm-2] (6) 
 
Thus the force density (pressure, Nm-2) pulling on a charged conductor is the same as the 
energy density [Jm-3].  These dimensions are actually the same, because J = Nm. 
 
 The maximum achievable E thus limits the maximum achievable pressure.  In 
MEMS devices with micron-level plate separations, E can approach 3 × 108 [Vm-1] 
before electric breakdown occurs, so F = εE2/2 ≅ 40 N/cm2, or ~10 lb/cm2.  For plate 
separations larger than a few mean-free paths for free electrons, Emax can be two orders of 
magnitude smaller.  Larger gaps are more vulnerable to breakdown because any free 
electrons accelerated to sufficient energies before a collision can produce additional free 
electrons that repeat the process several times in a cascade (breakdown) before they all 
strike the wall. 
 
 If the two plates are each charged with the same Q, instead of oppositely, the 
surface charges repel each other and reside on the outer surfaces of the two plates, away 
from each other.  Since there is now no E between the plates, it can apply no force.  
However, the charges Q on the outside are associated with E = Q/εA, which pulls the 
plates apart with the same force density F = εE2/2. 
 
 
Calculating Forces using Energy Derivatives 
 
 Mechanics teaches that a force f pushing an object a distance dz expends energy dw 
= f dz [J], so: 
 
   fon object = dw/dz (7) 
 
 The force f required to separate two capacitor plates oppositely charged with Q is 
therefore: 
 
   f = dw/dz = d(Q2δ/2εA)/dδ = Q2/2εA  [N] (8) 
 
where the energy stored in a capacitor C is CV2/2 = Q2/2C = Q2δ/2εA (we recall Q = CV 
and C = εA/δ).  We can put (8) in a more familiar form for force density F by noting F = 
f/A and Q = εEA: 
 
   F = Q2/2εA2 = εE2/2  [Nm-2] (9) 
 
which is the same expression as (6).  Note that (8) could be easily evaluated because Q 
remains constant as the plates separate.  If (8) had been expressed instead as d(CV2/2)/dδ, 
the derivative would have been more difficult to evaluate because both C and V depend 
on δ.  Therefore we always seek to express energy in terms of parameters that remain 
constant as dz changes. 
 



  5/20/02 - 4 - 

 This static attractive force remains the same if the plates are connected to a battery 
of voltage V.  A more awkward way to calculate the same force (9) is to assume 
(unnecessarily) that a battery is connected and that V remains constant.  In this case Q 
must vary with dz, and dQ flows into the battery, increasing its energy by VdQ.  Since 
dw in the force expression (7) is the total system energy, the changes in both battery and 
electric field energy must be calculated to yield the correct energy when we use (8).  As 
noted above, this complexity can be avoided by carefully restating the problem without 
the source. 
 
 The power of the energy method (8) is much more evident if we wish to calculate 
the forcef needed to pull two capacitor plates apart laterally, as illustrated in Figure L20-
6a.  The Lorentz force law requires knowledge ofE, the lateral components of which are 
responsible for the force of interest and are not readily determined.  Since energy 
derivatives can be computed accurately and easily, it is the preferred method in this case. 
 
 In this case we shall (needlessly, except for illustration) approach the energy 
problem the more difficult way by including the change in battery energy.  The 
capacitance C = εA/δ = εLW/δ, where the plate overlap is L meters and the width is W.  
The force f pulling the plates apart is: 
 
   f = dwT/dz = -dwT/dL = -(d/dL)(εWLV2/2δ - VQ) (10) 
 
where wT is the total energy and the two terms reflect the energy changes in the capacitor 
and battery respectively.  In (10) only L and Q vary with L, where Q = CV = εWLV/δ.  
Thus (10) becomes: 
 
 
 f = -(d/dL)(εWLV2/2δ - εWLV2/δ) = -(d/dL)(-εWLV2/2δ) = εWV2/2δ [Ν] (11) 
 
Had we noted that the static force f would be the same whether or not the battery were 
connected, we could have more easily set Q = constant and taken the derivative only with 
respect to the energy in the electric fields, yielding the same answer (11). 
 
 A simple example using (11) is the following.  Let W = 10 cm, δ = 10 microns in 
air, and V = 10 volts.  Then f = εoWV2/2δ = 8.854×10-12 × 0.1 × 102/2×10-5 ≅ 4.4×10-6 
Newtons, or ~one micro-pound of force.  Even if we decrease δ to one micron and 
increase V to 100 volts, the force still is only ~one milli-pound.  This force does not 
depend on L but can be boosted by increasing W, for example, by increasing the number 
of teeth in the electrodes, as illustrated in Figure L20-6b. 
 
 
Rotary Electrostatic Motors 
 
 One way to boost power levels of a motor with limited force f or torque is to 
increase the velocity at which it moves since power P = fv, where v is velocity.  Consider 
the ideal 4-segment rotary electrostatic motor illustrated in Figure L20-7.  It has radius R, 
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plate separation δ, total plate overlap A = R2θ [m2], and operating voltage V.  Stator 
plates occupy two quadrants of the motor and a rotating pair of quadrant plates (the rotor) 
can rotate to yield an overlap with the stator varying from zero to perfect as θ increases 
from zero to π/2.    If the voltage V is applied across the plates, a torque T is produced2, 
where: 
 
   T = -dwT/dθ  [Nm] (12) 
 
and dwT is the increment by which the total system energy (fields plus battery) is 
increased as a result of the motion θ.  This difference in sign between (10) and (12) is due 
to the fact that the force in (10) is applied to the system, and that in (12) is applied by the 
system to its environment. 
 
 The total energy increase is: 
 
   dwT = d(CV2/2) – VdQ  [J] = d(AεoV2/2δ) – V2dC 
          = R2dθεoV2/2δ – V2R2dθεo/δ = – V2R2dθεo/2δ (13) 
 
Therefore the torque T from (12) is: 
 
   T = -dwT/dθ = V2R2εo/2δ  [Nm] (14) 
 
If we assume R = 10-3, δ = 10-6, V = 300 volts; then T = 3002×10-6×8.8×10-12/2×10-6 ≅ 
4×10-7.  A single such ideal motor can then deliver Tω watts, where we might assume the 
tip velocity v of the rotor is 300 ms-1, slightly less than the speed of sound.  The 
corresponding angular velocity ω is v/R = 300/10-3 = 3×105 radians s-1, and the available 
power is ~4×10-7 × 3×105 = 0.12 watts if we neglect all losses3.  In principle one might 
pack ~2500 motors into one cubic centimeter if each motor were 10 microns thick, 
yielding ~300 W/cm3.   This can be compared to a 300-hp automobile engine that 
delivers 300×746 watts4, and would therefore occupy 746 cm3, or roughly the volume of 
a softball.  Such densities are impractical here because of the difficulties in removing heat 
and torque from such a package of over a million tiny motors.  They have great potential, 
however, for extremely low power applications where torque extraction can be efficient.  
For example, the torque could drive a gas turbine at high speeds.  The field of MEMS 
motors is still young, so its full potential remains unknown. 
 

                                                
2 Torque equals the force on a lever times its length.  Therefore Tθ is work performed by the torque, where 
θ is the angle (radians) through which the lever rotates about its pivot at one end.  Power is Tdθ/dt = Tω 
[W]. 
3 The slide L20-7 over estimates power by a factor of ~1000 by stating A = Rθ, not R2θ. 
4 There are 746 watts per horsepower. 
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MEMS Sensors 
 
 A common type of MEMS sensor electrostatically measures small displacements of 
lever arms due to temperature, pressure, acceleration, chemistry, or other changes.  
Figure 20-8a portrays a standard configuration that illustrates the basic principles, where 
the capacitor plates of area A are separated by the distance d, and the voltage V is 
determined in part by the voltage divider formed by the source resistance Rs and the 
sensor output resistance R.  Vs is the source voltage. 
 
 The circuit response to an increase δ in the plate separation d is to increase the 
capacitor voltage V above its normal equilibrium valueV determined by the voltage 
divider, whereV = Vs(R/[R+Rs]).  The capacitor then discharges exponentially 
towardV with a time constant ~R'C.  If Rs >> R then R' ≅ R; otherwise R' = R//Rs.  If Rs 
>> R and R represents a sensor similar to the best of those used for communications 
systems, then that sensor can detect as little as ~4×10-20 joules per "bit" of information.  
This can be compared to the incremental increase in capacitor energy dw due to the 
displacement δ << d as C decreases to C'.   
 
 dw = (C – C')V2/2 = V2εoA(d-1 – [d+δ]-1)/2 ≅ V2εoAδ/2d2 [J] (15) 
 
 A simple example illustrates the extreme potential sensitivity of such a sensor.  
Assume the plate separation d is one micron, A is 1-mm square (10-6), and V = 300.  
Then the minimum detectable δ given by (15), assuming dw = 4×10-20, is: 
 
      δmin = dw × 2d2/V2εoA  ≅ 4×10-20 2(10-6)2/(3002 × 8.8×10-12 × 10-6) ≅ 10-19 meters (16) 
 
At this level of sensitivity we are limited instead by thermal and mechanical noise due to 
the Brownian motion of air molecules and conduction electrons.  A more practical set of 
parameters might involve a less sensitive detector (dw ≅ 4×10-16), and lower voltages (V 
≅ 10); then δmin ≅ 1 angstrom (very roughly an atomic diameter).  The dynamic range of 
such a sensor would be enormously greater, of course. 
 


