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6.014 Lecture 21: 
Magnetic Forces and Devices 

 
A. Overview 
 

 Magnetic forces are central to a wide array of actuators and sensors. These forces 
can be calculated using either energy methods or the Lorentz force law, which is: 
 
   f = q(E +v × µoH)  Newtons (1) 
 
where q is the charge (Coulombs) on which the force acts, andv is the charge velocity.  
The energy method computes the forcef needed to move an object in the z direction by 
differentiating the total system energy wT with respect to displacement z: 
 
   f = dwT/dz (2) 
 
 Both these methods are illustrated below, first for the simple case of electrons 
moving in vacuum, and then for forces on wires and in motors and generators.  Finally 
the Hall effect is discussed. 
 
 
B. Lorentz Forces on Charges in Vacuum 
 
 Consider the evacuated tube illustrated in Figure L21-1a where electrons with 
charge –e are boiled off from the heated cathode and are accelerated toward the anode 
with velocityv by the electric fieldE, which is produced by the voltage V between 
anode and cathode.  The magnetic Lorentz force on the charge –e (-1.6021×1019 C) is 
easily found from (1) to be: 
 
   f = -ev ×  µoH  [N] (3) 
 
In high-voltage cathode-ray tubes (CRT's) used for television or computer displays the 
electrons are quickly accelerated near the cathode and then move with energy ~eV [J], 
where V is the tube voltage (see (3) in the notes for Lecture 20).  Since: 
 
   eV = mv2/2 (4) 
 
it follows that v = (2eV/m)0.5, where m is the electron mass (9.107×10-31 kg).  Thus 
electrons moving in a CRT such as that illustrated in Figure L21-1b are deflected 
upwards, whereH is directed out of the paper and the electrons move toward the right; 
the magnitude of the force on the electron is evµoH [N]. 
 
 In the special case where V andE are zero, a free electron moving perpendicular to 
a magnetic fieldB will experience a forcef orthogonal to its velocity vectorv, as 
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illustrated in Figure 21-1c.  Since this force |f | is always orthogonal tov, the trajectory 
of the electron will be circular (radius R) at angular frequency ωe [radians s-1]: 
 
   | f | = evµoH = mea = meωe

2R = mevωe (5) 
 
where v = ωeR.  We can solve (5) for this "electron cyclotron frequency" ωe: 
 
   ωe = eµoH/me (6) 
 
which is independent of v and the electron energy (provided the electron is not 
relativistic).  Thus magnetic field strengths H can be measured by observing the radiation 
frequency ωe of free electrons in the region of interest. 
 
 
C. Magnetic Forces on Currents in Wires 
 
 The Lorentz force law can also be used to compute forces on electrons in wires.  If 
there is no net charge and no current flowing in a wire, the forces on the positive and 
negative charges all cancel.  However, if n carriers per meter of charge q are flowing in a 
wire, as illustrated in Figure L21-2a, then the total force per meter on the wire is: 
 
   F = nqv × µoH =I × µoH  [Nm-1] (7) 
 
whereI is the current vector for the wire (I = nqv). 
 
 Consider two parallel wires carrying the same current I in the same direction and 
separated by distance r, as illustrated in Figure L21-2b.  We can easily findH(r) from 
Ampere's law and the cylindrical symmetry: 
 
   ∫CH • ds = I = 2πrH   ⇒  H = I/2πr (8) 
 
The mutual forcef attracting the two parallel wires is then found from (7) and (8) to be: 
 
   | F | = µoI2/2πr [Nm-1] (9) 
 
The simplicity of this equation and the ease of measurement of F, I, and r led to its use in 
definition of a Henry and the value for the permeability of free space, µo = 4π×10-7 
henries/meter.  If the two currents are in opposite directions, the force is repulsive.  For 
example, if I = 10 amperes and r = 2 millimeters, then (9) yields F = 4π×10-7 × 
102/2π2×10-3 = 0.01 Newtons/meter; this is approximately the average repulsive force 
between the two wires in a 120-volt AC lamp cord delivering one kilowatt.  These forces 
are attractive when the currents are parallel, so if we consider a wire of four quadrants, as 
illustrated in Figure L21-2c, they will squeeze together due to the "pinch effect".  At 
extreme currents, these forces can actually crush a wire.  The same effect can pinch 
electron beams flowing in charge-neutral plasmas. 
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D. Voltage Generation by Motion AcrossH 
 
 Wires moving across magnetic field lines acquire an open-circuit voltage that 
follows directly from the Lorentz force law (1).  Consider the electron illustrated in 
Figure L21-3a, which has charge –e and velocityv.  It is moving perpendicular toH and 
therefore experiences a force on it of -ev × µoH.  It experiences that force even inside a 
moving wire and will accelerate in response to it.  If an open-circuited wire of length W 
moves atv perpendicular toH, all the electrons will move until equilibrium is reached 
for which the net force on any electron is zero.  Otherwise there would be no equilibrium.  
The balancing force inside a wire is electric and is equal to -eE, as illustrated.  That is, 
the charges will move inside the wire and accumulate until there is sufficient electric 
potential across the wire to halt their movement.  Specifically, this Lorentz force balance 
requires: 
 
     -ev × µoH = eE (10) 
   E = -v × µoH (11) 
 
 Figure L21-3b illustrates such a wire of length W moving atv perpendicular toH.  
If the wire were open-circuited, the potential Φ across it would be the integral of the 
electric field necessary to cancel the magnetic forces on the electrons, where: 
 
   Φ = vµoHW (12) 
 
and the signs and directions are as indicated in the figure. 
 
 If the moving wire were then connected to a circuit, as illustrated, a current I could 
flow, depending on Φ and the Thevenin equivalent circuit elements V and R. 
 
 The current I induced by wire motion is governed by Ohm's law: 
 
   I = (V – Φ)/R (13) 
 
which can be positive or negative, depending on the relative values of V and Φ.  From (7) 
we see that the associated total forcef exerted on the wire byH is: 
 
   f =I × µoHW = x̂ µoHW(V – Φ)/R (14) 
 
where the unit vector x̂  is parallel tov. 
 
 Equation (14) enables us to compute the mechanical power delivered to or by the 
wire.  If the voltage source V is strong enough, then the system functions as a motor and 
the mechanical power delivered to the environment by the wire is: 
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   Pm =f •v = vµoHW(V – Φ)/R = Φ(V – Φ)/R  [W] (15) 
 
The electrical power delivered by the moving wire to the battery and resistor is: 
 
  Pe = -VI + I2R = -V(V – Φ)/R + (V – Φ)2/R = [(V – Φ)/R][-V + (V – Φ)] 
       = - Φ (V – Φ)/R  [W] (16) 
 
This equals the mechanical power Pm of (15) delivered to the wire.  If V is zero, then the 
wire delivers maximum electrical power, Φ 2/R.  As V increases, this delivered power 
diminishes and then becomes negative as the system ceases to be a generator and 
becomes a motor.  As a motor the mechanical power delivered to the wire by the 
environment becomes negative, and the electrical power delivered by the battery becomes 
positive.  That is, we have a: 
 
 Motor:  If mechanical power out > 0 
    If V > Φ = vµoHW (17) 
 
 Generator:  If electrical power out > 0 
    If V < Φ, or v > V/µoHW (18) 
 
 We call Φ the "back voltage" of a motor and when it exceeds the voltage V of the 
power source, it supplies power to it, becoming a generator.  This occurs as the velocity v 
increases above the threshold given by (18).  When V = Φ, the motor moves freely 
without any electromechanical forces. 
 
 
E. Rotary Wire Motors 
 
 For efficient continuous electromechanical power conversion, whether as a motor or 
generator, rotary devices are most efficient because the motion is continuous.  Figure 
L21-5a illustrates a motor comprising a single loop of wire carrying current I in the 
uniform magnetic fieldH.  The total torque on the motor axle is found by adding the 
contributions from each of the four sides of the current loop; only the longitudinal 
elements of length W at radius r contribute.  The total torque T = fr corresponding to the 
forces given by (7) is thus: 
 
   T = 2IµoHWr  [Nm] (19) 
 
Because the field H is uniform, the torque goes to zero only when the wire loop is vertical 
and temporarily no field lines are being cut due to rotor motion.  This torque history is 
plotted in Figure L21-5b, and goes both positive and negative, averaging to zero.  In 
order to achieve a non-zero average torque, a commutator can be added, as suggested in 
Figure L21-5c.  The two carbon brushes pick up charge from the rotating commutator 
contacts that pass the current I to the external environment.  By reversing the direction of 
the motor current twice per revolution, the more nearly constant torque history illustrated 
by the dashed line in Figure L21-5b is obtained and power conversion is maximized.  
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 An example of a two-pole commutated motor is shown in Figure L21-6a.  We 
assume: 1) B = µoH = 1 Tesla (10,000 gauss), provided by permanent magnets in the 
stator, 2) that the rotor has one 100-turn coil (N = 100) of area WR = A = 10-3 m2, and 3) 
the perfectly commutated motor is driven by a 24-volt DC power supply.  The maximum 
driven angular frequency ωmax is obtained if this motor is unloaded and Φmax = V = 24 
volts.  Using (12), the back-voltage Φmax produced by the wires moving at velocity v = 
ωR past the magnetic field H is: 
 
  Φmax = 2NvµoHW = NAµoHωmax = 24 (20) 
 
so it follows from (20) that: 
 
  ωmax = Φmax/NAµoH = 24/(100×10-3×1) = 240 rs-1 ⇒  ~2300 rpm (21) 
 
More typical values for B are ~0.1 (lower by a factor of 10), leading to ωmax of ~23,000 
rpm maximum.  Although this maximum speed is ten times greater, the motor torque and 
power at any given ω are reduced by a factor of ten.  The maximum torque T is obtained 
for this motor when the current is maximum: 
 
  T = NIµoHA = 100 I × 10-3  [Nm]   (→ ∞ if I → ∞) (22) 
 
Normally the current I is limited by the power supply to some value, say 10 A.  Then 
Tmax for this motor would be 1 Nm (equivalent to a force of 100 Newtons at a radius of 1 
cm). 
 
 
F. Rotary Motor Torque/Power/Speed Relations 
 
 The mechanical power output from a motor equals Tω [Nms-1], where T is a 
function of I, as given by (22), I is a function of Φ (see (13)), and Φ is proportional to ω.  
As a result, the mechanical power output of a motor such as that illustrated in Figure 
L21-7a is: 
 
   Pm = ωT = ωNIµoHA (23) 
 
Substituting I = (V – Φ)/R and Φ = NAµoHω yields: 
 
   Pm = ωN(V - NAµoHω) µoHA/R (24) 
 
This mechanical power Pm delivered is a function of ω and peaks at Pmax when ω = ωp, as 
illustrated in Figure L21-7b. 
 
 We can solve for ωp by setting dPm/dω to zero using (24); this yields: 
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   ωp = V/2NAµoH = ωmax/2 (25) 
 
where ωmax was given by (21) and Φmax= V.  At this frequency ωp the mechanical power 
out (24) peaks at Pp: 
 
 Pp = ωpT = (V/2NAµoH)N(V – [NAµoH V/2NAµoH])µoHA /R = V2/4R (26) 
 
where most of the terms cancel.  This same peak power would be dissipated if the motor 
were simply replaced by a resistor of value R, where R is the same as the Thevenin 
source resistance.  That is, the maximum power is converted to mechanical work when 
the motor looks to the Thevenin source like a matched load R, and the source voltage V is 
divided equally across the source resistance R and the load "R". 
 
 
G. Rotary Generator Power/Speed Relations 
 
 Similar results are obtained when the motor of Figure L21-6 is used as a generator 
by connecting the commutated windings to a resistive load R and forcefully turning the 
rotor.  The output current I = Φ/R is then a function of ω, where: 
 
   Φ = NAµoHω (27) 
 
and the electrical power Pe delivered to the load R is: 
 
   Pe = ΦI = Φ2/R = (ωNAµoH)2/R (28) 
 
To maximize Pe we simply maximize ω, although both the current and voltage out must 
be limited to prevent electrical breakdown or melting of the motor electrical insulation.  
Some motors are used only for bursts of output power, and the temporary heating of the 
wires can be tolerated if the heat capacity of the motor is sufficient.  Also, rotors may fly 
apart if ω is sufficiently high.  Generally the tip speed of the rotor is kept below the speed 
of sound for this reason and to reduce air drag. 
 
 The Thevenin source resistance Rs of an electrical generator is simply the 
dissipative resistance in the coil because the Thevenin voltage Φ does not depend on the 
current I; any change in the generator output voltage at constant ω is due only to that 
resistance. 
 
 
H. Hall Effect Sensors 
 
 Any conductor conveys current I by means of charged carriers, which are electrons 
in metals, and include both electrons and holes in semiconductors.  Figure L21-8b 
illustrates such a material for which the slab width is W and a magnetic fieldH is 
imposed perpendicular to both the current I and the slab width W.  Carriers (n per m) 
with charge q drifting at velocity v in the direction of I conveys current I = nqv and 
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experience an effective lateral Hall electric fieldEH = -v × µoH  [Vm-1] across the 
width of the slab, as given by (11).  The total Hall voltage VH is: 
 
   VH = WEH = -WvµoH (29) 
 
so the carrier drift velocity v can be determined: 
 
   v = -VH/WµoH  [ms-1] (30) 
 
Once v is determined, the product of carrier density and carrier charge can be determined: 
 
   nq = I/v  (31) 
 
Conversely, when the natural value for v is known, Hall effect sensors are commonly 
used to measure H using (29). 
 
 
 
 


