6.02 Fall 2009
Lecture #10

- state machines & trellises
- path and branch metrics
- Viterbi algorithm: add-compare-select
- hard decisions vs. soft decisions

State Machines & Trellises

- Example: \(k=3 \), rate \(\frac{1}{2} \) convolutional code
 - \(G_0 = 111: p_0 = 1 \times [n] \oplus 1 \times [n-1] \oplus 1 \times [n-2] \)
 - \(G_1 = 110: p_1 = 1 \times [n] \oplus 1 \times [n-1] \oplus 0 \times [n-2] \)
- States labeled with \(x[n-1] x[n-2] \)
- Arcs labeled with \(x[n] / p_0 p_1 \)

Example

- Using \(k=3 \), rate \(\frac{1}{2} \) code from earlier slides
- Received: 11101100011000
- Some errors have occurred...
- What’s the 4-bit message?
- Look for message whose xmit bits are closest to rcvd bits

<table>
<thead>
<tr>
<th>Xmit</th>
<th>Rcvd</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>000000000000</td>
<td>7</td>
</tr>
<tr>
<td>0001</td>
<td>000000011110</td>
<td>8</td>
</tr>
<tr>
<td>0010</td>
<td>000001111100</td>
<td>8</td>
</tr>
<tr>
<td>0011</td>
<td>000010101110</td>
<td>4</td>
</tr>
<tr>
<td>0100</td>
<td>001111111000</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>001111011110</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>001101001000</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>001100100110</td>
<td>4</td>
</tr>
<tr>
<td>1000</td>
<td>111110000000</td>
<td>6</td>
</tr>
<tr>
<td>1001</td>
<td>111110111110</td>
<td>5</td>
</tr>
<tr>
<td>1010</td>
<td>111101111100</td>
<td>7</td>
</tr>
<tr>
<td>1011</td>
<td>111101000110</td>
<td>2</td>
</tr>
<tr>
<td>1100</td>
<td>110001000110</td>
<td>5</td>
</tr>
<tr>
<td>1101</td>
<td>110001011110</td>
<td>4</td>
</tr>
<tr>
<td>1110</td>
<td>110010011000</td>
<td>6</td>
</tr>
<tr>
<td>1111</td>
<td>110010100110</td>
<td>3</td>
</tr>
</tbody>
</table>

Most likely: 1011

*Msg padded with 2 zeros before transmission

Viterbi Algorithm

- Want: Most likely message sequence
- Have: (possibly corrupted) received parity sequences
- Viterbi algorithm for a given \(k \) and \(r \):
 - Works incrementally to compute most likely message sequence
 - Uses two metrics
- Branch metric: \(BM(xmit, rcvd) \) measures likelihood that transmitter sent \(xmit \) given that we’ve received \(rcvd \).
 - “Hard decision”: use digitized bits, compute Hamming distance between xmit and rcvd. Smaller distance is more likely if BER is small
 - “Soft decision”: use received voltages (more later…)
- Path metric: \(PM[s,i] \) for each state \(s \) of the \(2^{k-1} \) transmitter states and bit time \(i \) where \(0 \leq i < \text{len}(message) \).
 - \(PM[s,i] = \text{most likely BM}(xmit_{\text{sent}}, received \text{ parity}) \) over all message sequences \(m \) that leave transmitter in state \(s \) at time \(i \)
 - \(PM[s,i+1] \) computed from \(PM[s,i] \) and \(p_0[p_1] \ldots p_{r-1} \)
Hard-decision Branch Metric

- **BM = Hamming distance** between expected parity bits and received parity bits
- **Compute BM for each transition arc in trellis**
 - Example: received parity = 00
 - BM(00,00) = 0
 - BM(01,00) = 1
 - BM(10,00) = 1
 - BM(11,00) = 2
- Will be used in computing PM[s,i+1] from PM[s,i].
- We'll want most likely BM, which, since we're using Hamming distance, means minimum BM.

Computing PM[s,i+1]

Starting point: we've computed PM[s,i], shown graphically as label in trellis box for each state at time i.

Example: PM[00,i] = 1 means there was 1 bit error detected when comparing received parity bits to what would have been transmitted when sending the most likely message, considering all messages that leave the transmitter in state 00 at time i.

Q: What's the most likely state s for the transmitter at time i?
A: state 00 (smallest PM[s,i])

Computing PM[s,i+1] cont'd.

Example cont'd: to arrive in state 01 at time i+1, either
1) The transmitter was in state 10 at time i and the i\text{th} message bit was a 0. If that's the case, the transmitter sent 11 as the parity bits and there were 2 bit errors since we received 00. Total bit errors = PM[10,i] + 2 = 5 OR
2) The transmitter was in state 11 at time i and the i\text{th} message bit was a 0. If that's the case, the transmitter sent 01 as the parity bits and there was 1 bit error since we received 00. Total bit errors = PM[11,i] + 1 = 3

Which is mostly likely?
Computing PM[s,i+1] cont’d.

Formalizing the computation:

\[
PM[s,i+1] = \min \{ PM[s, \alpha] + BM[\alpha \rightarrow s], \quad PM[s, \beta] + BM[\beta \rightarrow s] \}
\]

Example:

\[
PM[01,i+1] = \min \{ PM[10,i] + 2, \quad PM[11,i] + 1 \} = \min \{ 3 + 2, 2 + 1 \} = 3
\]

Notes:
1) Remember with arc was min; saved arcs will form a path through trellis
2) If both arcs have same sum, break tie arbitrarily (e.g., when computing PM[11,i+1])

Viterbi Algorithm

- Compute branch metrics for next set of parity bits
- Compute path metric for next column
 - add branch metric to path metric for old state
 - compare sums for paths arriving at new state
 - select path with smallest value (fewest errors, most likely)

Finding the Most-likely Path

- Path metric: number of errors on most-likely path to given state (min of all paths leading to state)
- Branch metric: for each arrow, the Hamming distance between received parity and expected parity

Example (cont’d.)

- After receiving 3 pairs of parity bits we can see that all ending states are equally likely
- Power of convolutional code: use future information to constrain choices about most likely events in the past
Survivor Paths

- Notice that some paths don’t continue past a certain state
 - Will not participate in finding most-likely path: eliminate
 - Remaining paths are called *survivor paths*
 - When there's only one path: we've got a message bit!

Example (cont’d.)

- When there are “ties” (sum of metrics are the same)
 - Make an arbitrary choice about incoming path
 - If state is not on most-likely path: choice doesn’t matter
 - If state is on most-likely path: choice may matter and error correction has failed (*mark state with underline to tell*)

Example (cont’d.)

- When we reach end of received parity bits
 - Each state’s path metric indicates how many errors have happened on most-likely path to state
 - Most-likely final state has smallest path metric
 - Ties means end of message uncertain (but survivor paths may merge to a unique path earlier in message)

Traceback

- Use most-likely path to determine message bits
 - Trace back through path: message in reverse order
 - Message bit determined by high-order bit of each state (remember that came from message bit when encoding)
 - Message in example: 101100 (w/ 2 transmission errors)
Viterbi Algorithm Summary

- Branch metrics measure the likelihood by comparing received parity bits to possible transmitted parity bits computed from possible messages.

- Path metric $PM[s,i]$ measures the likelihood of the transmitter being in state s at time i assuming the mostly likely message of length i that leaves the transmitter in state s.

- Most likely message? The one that produces the most likely $PM[s,N]$.

- At any given time there are 2^{k-1} most-likely messages we’re tracking → time complexity of algorithm grows exponentially with constraint length k.

Hard Decisions

- As we receive each bit it’s immediately digitized to “0” or “1” by comparing it against a threshold voltage
 - We lose the information about how “good” the bit is: a “1” at .9999V is treated the same as a “1” at .5001V

- The branch metric used in the Viterbi decoder is the Hamming distance between the digitized received voltages and the expected parity bits
 - This is called hard-decision Viterbi decoding

- Throwing away information is (almost) never a good idea when making decisions
 - Can we come up with a better branch metric that uses more information about the received voltages?

Soft Decisions

- Let’s limit the received voltage range to [0.0,1.0]
 - $V_{eff} = \max(0.0, \min(1.0, V_{received})$
 - Voltages outside this range are “good” 0’s or 1’s

- Define our “soft” branch metric as the Euclidian distance between received V_{eff} and expected voltages

- Soft-decision decoder chooses path that minimizes sum of Euclidian distances between received and expected voltages
 - Different branch metric but otherwise the same recipe

Channel Coding Summary

- Add redundant info to allow error detection/correction
 - CRC to detect error-transmission (our safety net for catching undiscovered or uncorrectable errors)
 - Block codes: multiple parity bits, RS codes: oversampled polynomials
 - Convolutional codes: continuous streams of parity bits

- Error correction
 - Block codes: use parity errors to triangulate which bits are in error
 - RS codes: use subsets of bits to vote for message, majority rules!
 - Convolutional codes: use Viterbi algorithm to find most-likely message