6.02 Fall 2009

Lecture #2

- Samples and Bits
- Real Wires
- Models
- Linearity and Superposition
6.02 Lecture 2 - Wires and Models

- Wires, Samples, and Bits
- Non-Ideal Transmission
 - Example wires and signal impact
 - Intersymbol Interference and Eye Diagrams
- Modeling Wires
 - Causality
 - Time-invariance
 - Linearity
- SUPERPOSITION
 - Demonstrating why it is so super
Types of Real "Wires"

IC Interconnect | Printed Circuit Board | Transatlantic Cable

Slow Response
Input

Ringing
Input

May also have long delays (Receiver does NOT know)

6.02 Fall 2009
Lecture 2, Slide #3
Transmission Setup and Notation

\[X \equiv \text{entire sequence} \]
\[x[n] \equiv n^{th} \text{ sample value} \]

\[Y \equiv \text{entire sequence} \]
\[y[n] \equiv n^{th} \text{ sample value} \]

Sample Rates:
- 1 million Samples/Second (IR Transceiver)
- Up to gigaSamples/Second (Fastest)
Samples, Bit Period, Bit Rate

- **Our Hardware**
 - Updates transmitter output voltage every microsecond (1 million times a second).
 - Remeasures receiver voltage every microsecond (1 million times a second).

- **Bit Period and Bit Rate**
 - $BP = \text{Samples/bit} \times 1 \text{ microsecond}$
 - $BR = \text{Bits transmitted per second}$
 - $BR = \frac{(1 \text{ million})}{(\text{Samples/bit})}$

- **Slower Bit Rate = Longer Bit Period**
 - More time to propagate through channel
Sending 0101110, 20 microseconds/bit

Samples per bit = 20, Bit rate = 50000 bits/second

Received Voltage is more “settled”.
Sending 0101110, 30 microseconds/bit

Samples per bit = 30, Bit rate = 33333.3 bits/second

Received Voltage
much more
"settled"
The 6.02 Infrared Transceiver

100 Samples/bit

Operating System Schedules Transmission
Bounced off paper

Bounced off ceiling

6.02 Fall 2009
The 6.02 IR Tranceiver - Faster and Noisier

20 Samples/bit

5 Samples/bit

6.02 Fall 2009

Lecture 2, Slide #5
Consider Interference - Slow Channel

1. Previous Symbol
 - Transmitting Two Bits

2. 1000
 - Compare previous bit with current bit

3. 100
 - Compare previous bit with current bit

4. 1100
 - Compare previous bit with current bit

5. 1010
 - Compare previous bit with current bit

6. That the previous bit was a one "interferes" with the current bit being a zero

7. Previous bit = zero interferes with current bit = 1
Intersymbol Interference

Long Bit Period (slow rate) Short Bit Period (Fast Rate)
Generate Eye Diagram

Eye Diagram Generated with 160 samples per bit

Overlap voltage waveforms from every two-bit period section.
Eye Diagram for Shorter Bit Periods

Eye diagram generated from 40 samples per bit and using a 200 bit long random sequence.
Eyes for Ringing versus Slow System

Medium Bit Period

Short Bit Period

Simple Threshold Detector will determine current bit.

Best Time to Test

6.02 Spring 2009
Eye Diagram for IR Detector

Eye Diagram 20
Samples per bit, dark room

Eye Diagram 20
Samples per bit, lights on!

Small Eye \((I = \sim 0.07 \text{Vols}) \)

Lecture 2, Slide #10
To design a post-processor, need a model of the wire.

From the wire, to improve performance:
- Can we post-process the signal?
- Can be transmitted accurately?
- Limits the bits/second that can be transmitted.
- Makes detecting bits more difficult.
- Non-ideal wires create interference.
A change in X causes a change in \textit{Wires} can not predict the future.

\textbf{1) Wires are Causa}

\textbf{Model (Example) Circuit Model of Wire}

\textbf{Transmitter}

\textbf{Sampled Output}

\textbf{Example Mode} of a Physical Wire
A + time-shifted input → [Y - N]

Y ← [Y - N]

X ← [Y - N]

(shift)
3) Linearity (A Strong Assumption)

3a) Scaling

\[y[n] = \frac{1}{4} x[n] \quad \text{by linearity} \]

\[y_2[n] = 2y_1[n] \quad \text{Scale Inputs} \rightarrow \text{Scaled Outputs} \]

3b) Sum Inputs \rightarrow Sum Outputs

\[y_\Delta[n] = \sum y[n] \]

\[y_0[n] = \sum y[n] \]

\[x_{\Delta+n}[n] = x_\Delta[n] + x_0[n] \]

\[y_{\Delta+n}[n] = y_\Delta[n] + y_0[n] \]
Suppose \(X_{UV} \) and \(X_{UV} \) be unit step responses.

\[
X_{UV} = (1-\alpha) \quad \text{and} \quad X_{UV} = \mu_{UV}^{\text{unit step}}
\]

Example - Unit Step Responses

\[
A \times [u - N_u] + B \times [v - N_v] \leq \left\lfloor \frac{A}{\sqrt{A + \mu_{UV}} + B} \times [u - N_u] \right\rfloor
\]

Linear Time-Invariant Systems
\[X \in \mathbb{L} = U \in \mathbb{L}^{-47} - U \in \mathbb{L}^{-22} \]

\[Y \in \mathbb{L}^{-11} - Y \in \mathbb{L}^{-22} \]

\[+ Y \in \mathbb{L}^{-22} - Y \in \mathbb{L}^{-13} \]

\[+ (1 - \frac{1}{2})(\in_{-3} - \in_{-13}) \]

\[= (1 - \frac{1}{2})(\in_{-2}) \]

\[- (1 - \frac{1}{2})(\in_{-22}) \]

\[+ \mathbb{L}^{-13} \]

\[\mathbb{L}^{-22} \]
Step Response and results from superposition
Step Response For Another Example Channel
Xmit Data

Time shifted and sign adjusted channel step responses

Summed responses = Rcv'd data

010110 Transmitted Through Example Channel
Sending 0101110, 5 microseconds/bit

Samples per bit = 5, Bit rate = 200000 bits/second

Threshold
Eye Diagram for 5 microsecond bit period

Notice many different cases →

Implies more than single bit ISI

Notice smaller Eye
Sending 0101110, 9 microseconds/bit

Samples per bit = 9, Bit rate = 111111 bits/second

Xmit Voltage

Sample Number

Recieved Data Looks Clear
Eye Diagram for 9 microsecond bit period

Note: Wider Eye (than BP = 5us)
Sending 0101110, 13 microseconds/bit

Samples per bit = 13, Bit rate = 76923.1 bits/second
Eye Diagram for 13 microsecond bit period

Almost perfect eye