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LECTURE 14

Frequency-Domain Sharing and

Fourier Series

In earlier lectures, we learned about medium access (MAC) protocols for allowing a set of

users to share a single communication medium by well-controlled turn-taking, a form of

time-domain sharing (we used the term “time sharing” earlier). In these three lectures, we

will focus on using P sinusoids of P different frequencies to simultaneously “carry” P dif-

ferent messages (from one or more transmitters) over a common, shared communication

medium. This form of sharing is termed frequency-domain sharing (aka “frequency shar-

ing”) or spectral-domain sharing.1 Frequency sharing eliminates contention, so there are no

collisions, but at the same time, dedicates frequencies to different transmissions whether or

not they are used, so when traffic loads are skewed, the peak data transfer rate is generally

lower than with contention protocols. In practice, wireless networks use a combination of

time and frequency sharing, as we will see in a case study on 802.11 (WiFi) networks later

in the course.

To understand these trade-offs, we will need a new mathematical tool, the Fourier se-
ries. Even though we will focus on using the Fourier series to analyze only frequency-

domain sharing, Fourier series appear in an enormous variety of applications including

quantum mechanics, electromagnetics, video, audio, and image compression, semicon-

ductor transport, magnetic-resonance imaging (MRIs), and crystallography, to name just a

few.

� 14.1 Spectral-Domain Channel Sharing, Once over “Lightly”

A good way to understand some of the issues in spectral-domain sharing is to consider the

visible spectrum, colors from red to violet, corresponding to frequencies roughly in the 4×
1014 to 8× 1014 hertz (400 to 800 terahertz) range. If two users want to simultaneously send

different messages over some distance using high powered lamps, they can use different

colors. The first transmitter could send a message by turning on and off a red lamp, and

the second transmitter could send a message by turning on an off a green lamp. Over

1
We will use the two terms interchangeably.
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Figure 14-1: A Diagram of frequency-domain sharing.

time, a distant receiver will see a changing mixture of red, green, and yellow, but will be

able to untangle the messages from the two transmitters by “pulling out” the frequency of

interest. If there are many transmitters, all using different colors, then the receiver may see

what looks like white light, but with the aid of a simple glass prism, the receiver will be

able to separate out each of the colors and determine each of the messages.

In our “colorful” example, one of the transmitters digitally modulates the information

they wish to send over the red light by turning on an off a red lamp, where “on” can indi-

cate a logical 1, and “off” a logical 0. The red light carries the modulated digital message

and is said to be the carrier. When a receiver uses a prism to separate out the different

colors, and then converts a specific color’s intensity changes back in to the digital data,

we refer to the process as demodulation. Each other transmitter uses a different colored

light to carry its modulated signal. Figure 14-1 summarizes, in diagram form, the pro-

cess of modulation, transmission across a channel, and demodulation, for the case of P
transmitters and receivers sharing a single physical channel.

Spectral-domain sharing using different colors (wavelengths of light) is actually a com-

monly used approach to transfer data over optical fibers. The method is referred to as

wavelength-division multiplexing (WDM), and modern fiber-optic communication sys-

tems often use a hundred different wavelengths, corresponding to a hundred different

frequencies or a hundred different colors. With current technology, each color can carry

data through the optical fiber at a rate of 100 gigabits per second, yielding a net transfer

rate of 10 terabits per second.

In the case of fiber, it is tempting to suggest that one should just keep adding channels,

to make the net data transfer rate approach infinity. Unfortunately, for fiber, whose carrier

frequencies are on the order of 1014 hertz, there are technological problems that limit the

number of carriers. For wireless transmission systems, whose carrier frequencies are on

the order of 109 hertz (i.e., one to a few gigahertz), current technology can easily achieve

a more fundamental limit: for wireless systems, there is a fundamental trade-off between

the distance between carrier frequencies, and the maximum data rate per carrier.
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To understand these limitations, we will need a new tool, the Fourier series. The Fourier

series is a way to express any periodic sequence as a weighted sum of cosines and sines or,

equivalently, as a weighted sum of complex exponentials (taking advantage of the familiar

identities relating sines and cosines to complex exponentials).

Before describing the Fourier series, we discuss the notion of discrete frequencies and

how they arise from a continuous waveform.

� 14.2 Discrete Frequency

If we have some periodic function in continuous time, t, say, x(t) = cos(2πft), we say that

it has a frequency, f , and a period, T = 1
f . The notion of frequency for such a periodic

continuous waveform is easy to interpret in part because it is well-defined for all values of

t. But how do we go about defining frequency for a discretized function?

To discretize this continuous function into a set ot discrete voltage samples, we sample

it at some other sampling frequency, fs, resulting in a discrete sequence

x[n] = cos(2πft) |t=nTs= cos(2πfTsn), (14.1)

where Ts = 1
fs

. The discrete sequence, X defined by the x[n] values, is said to have a

discrete frequency, Ω, defined as

Ω = 2πfTs =
2πf

fs
.

We can therefore relate the continuous frequency f to its discrete equivalent Ω, in terms

of the sampling frequency used to discretize the continuous waveform, fs.

Furthermore, it suffices to consider discrete frequencies Ω in the range [−π,π). The rea-

son is that for any frequency outside this range, there is an equivalent frequency within

this range. To see why, suppose x[n] = ej(π+φ)n and φ ∈ (0,2π) , which defines a sequence

with frequency outside the range. Because ejπn = e−jπn, x[n] = ej(φ−π)n, which is a fre-

quency in the range [−π,π). If φ > 2π or φ < 0, we can simply substract out the largest

integer multiple of 2π and apply the same argument, because ej2πn = 1 for all integers n.

� 14.3 Periodicity and the Fourier Series

The Fourier series can represent any periodic sequence, that is, any sequence for which

there is some finite N such that

x[n+N ] = x[n], ∀n ∈ (−∞,∞). (14.2)

The assumption of periodicity is not as limiting as it seems. One can make a periodic

sequence out of a any finite-length sequence, just by repeating the sequence, as shown for

N = 400 in Figure 14-2. In addition, we can assume that N is even (if N were odd, we can

just double it to produce an even N for which Eq. (14.2) holds).
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Figure 14-2: Making a finite sequence periodic.

� 14.3.1 Discretized Frequencies

There are some limitations imposed by assuming periodicity. In particular, the frequencies

of sines and cosines are restricted to discrete values. We already know that for cosine and

sine sequences with frequency Ω, we can limit consideration to −π ≤Ω< π. If the sequence

is now also periodic with period N , Ω must satisfy an additional constraint. To see this,

consider

ejΩ(n+N) = ejΩnejΩN , ∀n ∈ (−∞,∞) (14.3)

and therefore ejΩN = 1. There are only certain values of Ω for which ejΩN = 1. We can now

say that an N -periodic sine or cosine must have a frequency in the set

Ω ∈ {0,±2π

N
,±2

2π

N
, . . . ,±

�
N

2
− 1

�
2π

N
,±π}. (14.4)

� 14.3.2 The Fourier Series

Any periodic function can be exactly represented with a Fourier series, a statement we will

not prove here (the proof is given in the annotated slides of lecture 14). Instead, we will

state the Fourier Series Theorem in the form we will find most useful. For any periodic

sequence, X , with period N , there exists a representation of that sequence as a sum of

complex exponentials. That is,

x[n] =
K−1�

k=−K

X[k]ej
2π
N kn K =

N

2
, (14.5)

or to simplify notation,

x[n] =
K−1�

k=−K

X[k]ejΩkn Ωk =
2π

N
k, (14.6)

where the complex number, X[k], is the referred to as the Fourier coefficient associated

with Ωk.

Note that the Fourier series has 2K =N complex coefficients, X[k], −N
2 ≤K ≤ N

2 −1, but
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there are only N unique real values for X , x[0], ..., x[N − 1]. It may seem like there are too

many Fourier coefficients (because the Fourier coefficients have a real and an imaginary

part), but that is not the case. As shown in the Lecture 14 annotated notes, the real part

of the Fourier coefficients are an even function of k, and the imaginary part of the Fourier

coefficients is an odd function of k,

real(X[k]) = real(X[−k]) imag(X[k]) = −imag(X[−k]). (14.7)

� 14.4 Modulation and Demodulation

Modulating is defined as multiplying our input X (whose nth value is x[n]) by a cosine

(or sine) sequence. If we multiply x[n] by a cosine of frequency Ωm, we can observe what

happens to the Fourier coefficients. The product can be represented by two copies of the

Fourier series representation for x[n], one shifted up by Ωm and one shifted down by Ωm,

and each scaled by
1
2 . Mathematically,

x[n] cosΩm[n] =

�
K−1�

k=−K

X[k]ejΩkn

��
1

2
ejΩmn +

1

2
e−jΩmn

�
, (14.8)

which can be simplified to

=
1

2

K−1�

k=−K

X[k]ej(Ωk+Ωm)n +
1

2

K−1�

k=−K

X[k]ej(Ωk−Ωm)n. (14.9)

Equation 14.9 shows that the Fourier coefficients of the product are exactly the Fourier

coefficients of x[n] (X[K]), scaled and at the new frequencies of Ωk+Ωm and Ωk-Ωm.

If the channel is ideal, so that Y = X , then demodulation by multiplying by cosΩmn is

given by

�
1

2

K−1�

k=−K

X[k]ej(Ωk+Ωm)n +
1

2

K−1�

k=−K

X[k]ej(Ωk−Ωm)n

��
1

2
ejΩmn +

1

2
e−jΩmn

�
, (14.10)

which can be simplified to

1

4

K−1�

k=−K

X[k]ej(Ωk+2Ωm)n +
1

4

K−1�

k=−K

X[k]ej(Ωk−2Ωm)n +
1

2

K−1�

k=−K

X[k]ej(Ωk)n. (14.11)

As is clear from (14.11), the process of multiplying by a cosine to modulate, and then a

cosine to demodulate, results in a version of the original Fourier series for X , scaled by
1
2 , and two copies of the Fourier series representation for X , one shifted up by 2Ωm and

one shifted down by 2Ωm, with each scaled by
1
4 . If X is bandlimited, so that X[k] = 0

whenever |Ωk| ≥ |Ωm|, then the three sums in (14.11) have no overlapping terms (note: it

must also be true that 3 ∗ |Ωm| ≤ π to avoid “wrap-around”). Then, X can be recovered

with a low-pass filter.
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If demodulation is performed by multiplying by sinΩmn, then

�
1

2

K−1�

k=−K

X[k]ej(Ωk+Ωm)n +
1

2

K−1�

k=−K

X[k]ej(Ωk−Ωm)n

��
− j

2
ejΩmn +

j

2
e−jΩmn

�
, (14.12)

which can be simplified to

−j

4

K−1�

k=−K

X[k]ej(Ωk+2Ωm)n +
j

4

K−1�

k=−K

X[k]ej(Ωk−2Ωm)n
(14.13)

and there is no unshifted version of the Fourier series of X to low-pass filter.


