Lecture #22: Lossless Source Coding
November 29, 2010

• Information & entropy
• Variable-length codes: Huffman’s algorithm
• Adaptive codes: LZW algorithm

Measuring Information Content
Suppose you’re faced with N equally probable choices, and I give you a fact that narrows it down to M choices. Claude Shannon offered the following formula for the information you’ve received:

\[\log_2 \left(\frac{N}{M} \right) \text{ bits of information} \]

Examples:
• information in one coin flip: \(\log_2(2/1) = 1 \) bit
• roll of 2 dice: \(\log_2 (36/1) = 5.2 \) bits
• outcome of a Patriots game: 1 bit (well, actually, are both outcomes equally probable?)

Expected information content in a choice = \(\sum p_i \log_2 \left(\frac{1}{p_i} \right) \) bits

We can use this to compute the information content taking into account all possible choices:

When choices aren’t equally probable
When the choices have different probabilities \((p_i) \), you get more information when learning of a unlikely choice than when learning of a likely choice. Shannon defined:

\[\text{Information from choice } i = \log_2 \left(\frac{1}{p_i} \right) \text{ bits} \]

This characterization of the information content in learning of a choice is called the information entropy or Shannon’s entropy.

Goal: Match Data Rate to Info Rate
• Ideally we want to find a way to encode message so that the transmission data rate would match the information content of the message
• It can be hard to come up with such a code!
 – Transmit results of 1000 flips of unfair coin; \(p(\text{heads}) = p_H \)
 – Avg. info in unfair coin flip:
 \[p_H \log_2 \left(\frac{1}{p_H} \right) + (1-p_H) \log_2 \left(\frac{1}{1-p_H} \right) \]
 – For \(p_H = .999 \), this evaluates to .0114
 – Goal: encode 1000 flips in 1.14 bits! How? What’s the code? Hint: can’t encode each flip separately
• Conclusions
 – Effective codes leverage context
 • How to encode Shakespeare sonnets using just 8 bits!
 • What if some sonnets are more popular than others!
 • Effective codes encode sequences, not single symbols

<table>
<thead>
<tr>
<th>Choice</th>
<th>(p_i)</th>
<th>(\log_2 (1/p_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>'A'</td>
<td>1/3</td>
<td>1.58 bits</td>
</tr>
<tr>
<td>'B'</td>
<td>1/2</td>
<td>1 bit</td>
</tr>
<tr>
<td>'C'</td>
<td>1/12</td>
<td>3.58 bits</td>
</tr>
<tr>
<td>'D'</td>
<td>1/12</td>
<td>3.58 bits</td>
</tr>
</tbody>
</table>

Example

Expected information content in a choice
\[= (333)(1.58) + (.5)(1) + (2)(.083)(3.58) \]
\[= 1.636 \text{ bits} \]

Can we find an encoding where transmitting 1000 choices requires 1626 bits on the average?
The naïve fixed-length encoding uses two bits for each choice, so transmitting the results of 1000 choices requires 2000 bits.
Variable-length Encodings of Symbols
(David Huffman, MIT 1950)

Use shorter bit sequences for high probability choices,
longer sequences for less probable choices

<table>
<thead>
<tr>
<th>choice</th>
<th>p_i</th>
<th>encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.33</td>
<td>110</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>0.083</td>
<td>111</td>
</tr>
<tr>
<td>D</td>
<td>0.083</td>
<td>101</td>
</tr>
</tbody>
</table>

Expected length
\[E = (0.33)(2) + (0.5)(1) + (0.083)(3)\]
\[= 1.666 \text{ bits}\]

Transmitting 1000 choices takes an average of 1666 bits... good, but not optimal (1626 bits)

Huffman’s Coding Algorithm

- Begin with the set S of symbols to be encoded as binary strings, together with the probability $p(s)$ for each symbol s in S. The probabilities sum to 1.
- In the example from the previous slide, the initial set S contains the four symbols and their associated probabilities from the table.
- Repeat these steps until there is only 1 symbol left in S:
 - Choose the two members of S having lowest probabilities. (Resolve ties arbitrarily.)
 - Remove the selected symbols from S, and create a new node of the decoding tree whose children (sub-nodes) are the symbols you’ve removed. Label the left branch with a “0”, and the right branch with a “1” (you can also do it the other way around).
 - Add to S a new symbol that represents this new node. Assign this new symbol a probability equal to the sum of the probabilities of the two nodes it replaces.

Huffman Coding Example

- Initially $S = \{ (A, 1/3) \ (B, 1/2) \ (C, 1/12) \ (D, 1/12) \}$
- First iteration
 - Symbols in S with lowest probabilities: C and D
 - Create new node
 - Add new symbol to $S = \{ (A, 1/3) \ (B, 1/2) \ (CD, 1/6) \}$
- Second iteration
 - Symbols in S with lowest probabilities: A and CD
 - Create new node
 - Add new symbol to $S = \{ (B, 1/2) \ (ACD, 1/2) \}$
- Third iteration
 - Symbols in S with lowest probabilities: B and ACD
 - Create new node
 - Add new symbol to $S = \{ (BACD, 1) \}$

Summary

- Source coding: recode message stream to remove redundant information, aka compression.
- Our goal: match data rate to actual information content.
- Information content from choice $i = \log_2(1/p_i)$ bits
- Shannon’s Entropy: average information content on learning a choice $= \sum p_i \log_2(1/p_i)$.
- Huffman’s encoding algorithm builds optimal variable-length codes when symbols encoded individually.

Huffman Codes - The Final Word?

- Given static symbol probabilities, the Huffman algorithm creates an optimal encoding when each symbol is encoded separately.
- Huffman codes have the biggest reduction in average message length when some symbols are substantially more likely than other symbols.
- You can improve the results by adding encodings for symbol pairs, triples, quads, etc. But the number of possible encodings quickly becomes intractable.
- To get a more efficient encoding (closer to information content) we need to encode sequences of choices, not just each choice individually.
- Symbol probabilities change message-to-message, or even within a single message.
- Can we do adaptive variable-length encoding?
- Yes – the LZW algorithm does just that!