Lecture 9

Viterbi Decoding of Convolutional Codes

This lecture describes an elegant and efficient method to decode convolutional codes. It avoids the explicit enumeration of the 2^N possible combinations of N-bit parity bit sequences. This method was invented by Andrew Viterbi ('57, SM '57) and bears his name.

9.1 The Problem

At the receiver, we have a sequence of voltage samples corresponding to the parity bits that the transmitter has sent. For simplicity, and without loss of generality, we will assume 1 sample per bit.

In the previous lecture, we assumed that these voltages have been digitized to form a received bit sequence. If we decode this received bit sequence, the decoding process is termed hard decision decoding (aka “hard decoding”). If we decode the voltage samples directly before digitizing them, we term the process soft decision decoding (aka “soft decoding”). The Viterbi decoder can be used in either case. Intuitively, because hard decision decoding makes an early decision regarding whether a bit is 0 or 1, it throws away information in the digitizing process. It might make a wrong decision, especially for voltages near the threshold, introducing a greater number of bit errors in the received bit sequence. Although it still produces the most likely transmitted sequence given the received sequence, by introducing additional errors in the early digitization, the overall reduction in the probability of bit error will be smaller than with soft decision decoding. But it is conceptually a bit easier to understand hard decoding, so we will start with that, before going on to soft decision decoding.

As mentioned in the previous lecture, the trellis provides a good framework for understanding decoding. Suppose we have the entire trellis in front of us for a code, and now receive a sequence of digitized bits (or voltage samples). If there are no errors (i.e., the noise is low), then there will be some path through the states of the trellis that would exactly match up with the received sequence. That path (specifically, the concatenation of the encoding of each state along the path) corresponds to the transmitted parity bits. From
Figure 9-1: The trellis is a convenient way of viewing the decoding task and understanding the time evolution of the state machine.

there, getting to the original message is easy because the top arc emanating from each node in the trellis corresponds to a “0” bit and the bottom arrow corresponds to a “1” bit.

When there are errors, what can we do? As explained earlier, finding the most likely transmitted message sequence is appealing because it minimizes the BER. If we can come up with a way to capture the errors introduced by going from one state to the next, then we can accumulate those errors along a path and come up with an estimate of the total number of errors along the path. Then, the path with the smallest such accumulation of errors is the path we want, and the transmitted message sequence can be easily determined by the concatenation of states explained above.

To solve this problem, we need a way to capture any errors that occur in going through the states of the trellis, and a way to navigate the trellis without actually materializing the entire trellis (i.e., without enumerating all possible paths through it and then finding the one with smallest accumulated error). The Viterbi decoder solves these problems. It is an example of a more general approach to solving optimization problems, called dynamic programming. Later in the course, we will apply similar concepts in network routing protocols to find good paths in multi-hop networks.

9.2 The Viterbi Decoder

The decoding algorithm uses two metrics: the **branch metric** (BM) and the **path metric** (PM). The branch metric is a measure of the “distance” between what was transmitted and what was received, and is defined for each arc in the trellis. In hard decision decoding, where we are given a sequence of digitized parity bits, the branch metric is the Hamming distance between the expected parity bits and the received ones. An example is shown in
Figure 9.2: The branch metric for hard decision decoding. In this example, the receiver gets the parity bits 00.

Figure 9.2, where the received bits are 00. For each state transition, the number on the arc shows the branch metric for that transition. Two of the branch metrics are 0, corresponding to the only states and transitions where the corresponding Hamming distance is 0. The other non-zero branch metrics correspond to cases when there are bit errors.

The path metric is a value associated with a state in the trellis (i.e., a value associated with each node). For hard decision decoding, it corresponds to the Hamming distance over the most likely path from the initial state to the current state in the trellis. By “most likely”, we mean the path with smallest Hamming distance between the initial state and the current state, measured over all possible paths between the two states. The path with the smallest Hamming distance minimizes the total number of bit errors, and is most likely when the BER is low.

The key insight in the Viterbi algorithm is that the receiver can compute the path metric for a (state, time) pair incrementally using the path metrics of previously computed states and the branch metrics.

9.2.1 Computing the Path Metric

Suppose the receiver has computed the path metric $PM[s, i]$ for each state s (of which there are 2^{k-1}, where k is the constraint length) at time step i. The value of $PM[s, i]$ is the total number of bit errors detected when comparing the received parity bits to the most likely transmitted message, considering all messages that could have been sent by the transmitter until time step i (starting from state “00”, which we will take by convention to be the starting state always).

Among all the possible states at time step i, the most likely state is the one with the smallest path metric. If there is more than one such state, they are all equally good possibilities.

Now, how do we determine the path metric at time step $i + 1$, $PM[s, i + 1]$, for each state s? To answer this question, first observe that if the transmitter is at state s at time step $i + 1$, then it must have been in only one of two possible states at time step i. These two predecessor states, labeled α and β, are always the same for a given state. In fact, they
depend only on the constraint length of the code and not on the parity functions. Figure 9-2 shows the predecessor states for each state (the other end of each arrow). For instance, for state 00, \(\alpha = 00 \) and \(\beta = 01 \); for state 01, \(\alpha = 10 \) and \(\beta = 11 \).

Any message sequence that leaves the transmitter in state \(s \) at time \(i + 1 \) must have left the transmitter in state \(\alpha \) or state \(\beta \) at time \(i \). For example, in Figure 9-2, to arrive in state '01' at time \(i + 1 \), one of the following two properties must hold:

1. The transmitter was in state '10' at time \(i \) and the \(i \)-th message bit was a 0. If that is the case, then the transmitter sent '11' as the parity bits and there were two bit errors, because we received the bits 00. Then, the path metric of the new state, \(\text{PM['01', } i + 1 \text{]} \) is equal to \(\text{PM['10', } i \text{]} + 2 \), because the new state is '01' and the corresponding path metric is larger by 2 because there are 2 errors.
2. The other (mutually exclusive) possibility is that the transmitter was in state '11' at time \(i \) and the \(i \)-th message bit was a 0. If that is the case, then the transmitter sent 01 as the parity bits and there was one bit error, because we received 00. The path metric of the new state, \(\text{PM['01', } i + 1 \text{]} \) is equal to \(\text{PM['11', } i \text{]} + 1 \).

Formalizing the above intuition, we can easily see that

\[
\text{PM}[s, i + 1] = \min(\text{PM}[\alpha, i] + \text{BM}[\alpha \rightarrow s], \text{PM}[\beta, i] + \text{BM}[\beta \rightarrow s]),
\]

where \(\alpha \) and \(\beta \) are the two predecessor states.

In the decoding algorithm, it is important to remember which arc corresponded to the minimum, because we need to traverse this path from the final state to the initial one keeping track of the arcs we used, and then finally reverse the order of the bits to produce the most likely message.

9.2.2 Finding the Most Likely Path

We can now describe how the decoder finds the most likely path. Initially, state '00' has a cost of 0 and the other \(2^{k-1} - 1 \) states have a cost of \(\infty \).

The main loop of the algorithm consists of two main steps: calculating the branch metric for the next set of parity bits, and computing the path metric for the next column. The path metric computation may be thought of as an add-compare-select procedure:

1. Add the branch metric to the path metric for the old state.
2. Compare the sums for paths arriving at the new state (there are only two such paths to compare at each new state because there are only two incoming arcs from the previous column).
3. Select the path with the smallest value, breaking ties arbitrarily. This path corresponds to the one with fewest errors.

Figure 9-3 shows the algorithm in action from one time step to the next. This example shows a received bit sequence of 11 10 11 00 01 10 and how the receiver processes it. The fourth picture from the top shows all four states with the same path metric. At this stage, any of these four states and the paths leading up to them are most likely transmitted bit sequences (they all have a Hamming distance of 2). The bottom-most picture shows the same situation with only the survivor paths shown. A survivor path is one that has a chance of being the most likely path; there are many other paths that can be pruned away because there is no way in which they can be most likely. The reason why the Viterbi decoder is
practical is that the number of survivor paths is much, much smaller than the total number of paths in the trellis.

Another important point about the Viterbi decoder is that future knowledge will help it break any ties, and in fact may even cause paths that were considered “most likely” at a certain time step to change. Figure 9-4 continues the example in Figure 9-3, proceeding until all the received parity bits are decoded to produce the most likely transmitted message, which has two bit errors.

9.3 Soft Decision Decoding

Hard decision decoding digitizes the received voltage signals by comparing it to a threshold, before passing it to the decoder. As a result, we lose information: if the voltage was 0.500001, the confidence in the digitization is surely much lower than if the voltage was 0.999999. Both are treated as “1”, and the decoder now treats them the same way, even though it is overwhelmingly more likely that 0.999999 is a “1” compared to the other value.

Soft decision decoding (also sometimes known as “soft input Viterbi decoding”) builds on this observation. It does not digitize the incoming samples prior to decoding. Rather, it uses a continuous function of the analog sample as the input to the decoder. For example, if the expected parity bit is 0 and the received voltage is 0.3 V, we might use 0.3 (or 0.3\(^2\), or some such function) as the value of the “bit” instead of digitizing it.

For technical reasons that will become apparent later, an attractive soft decision metric is the square of the difference between the received voltage and the expected one. If the convolutional code produces \(p\) parity bits, and the \(p\) corresponding analog samples are \(v = v_1, v_2, \ldots, v_p\), one can construct a soft decision branch metric as follows

\[
BM_{\text{soft}}[u, v] = \sum_{i=1}^{p} (u_i - v_i)^2,
\]

(9.2)

where \(u = u_1, u_2, \ldots, u_p\) are the expected \(p\) parity bits (each a 0 or 1). Figure 9-5 shows the soft decision branch metric for \(p = 2\) when \(u\) is 00.

With soft decision decoding, the decoding algorithm is identical to the one previously described for hard decision decoding, except that the branch metric is no longer an integer Hamming distance but a positive real number (if the voltages are all between 0 and 1, then the branch metric is between 0 and 1 as well).

It turns out that this soft decision metric is closely related to the probability of the decoding being correct when the channel experiences additive Gaussian noise. First, let’s look at the simple case of 1 parity bit (the more general case is a straightforward extension). Suppose the receiver gets the \(i^{\text{th}}\) parity bit as \(v_i\) volts. (In hard decision decoding, it would decode – as 0 or 1 depending on whether \(v_i\) was smaller or larger than 0.5.) What is the probability that \(v_i\) would have been received given that bit \(u_i\) (either 0 or 1) was sent? With zero-mean additive Gaussian noise, the PDF of this event is given by

\[
f(v_i|u_i) = \frac{e^{-d_i^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}},
\]

(9.3)

where \(d_i = v_i^2\) if \(u_i = 0\) and \(d_i = (v_i - 1)^2\) if \(u_i = 1\).
The log likelihood of this PDF is proportional to $-d_i^2$. Moreover, along a path, the PDF of the sequence $V = v_1, v_2, \ldots, v_p$ being received given that a code word $U = u_1, u_2, \ldots, u_p$ was sent, is given by the product of a number of terms each resembling Eq. (9.3). The logarithm of this PDF for the path is equal to the sum of the individual log likelihoods, and is proportional to $-\sum_i d_i^2$. But that’s precisely the negative of the branch metric we defined in Eq. (9.2), which the Viterbi decoder minimizes along the different possible paths! Minimizing this path metric is identical to maximizing the log likelihood along the different paths, implying that the soft decision decoder produces the most likely path that is consistent with the received voltage sequence.

This direct relationship with the logarithm of the probability is the reason why we chose the sum of squares as the branch metric in Eq. (9.2). A different noise distribution (other than Gaussian) may entail a different soft decoding branch metric to obtain an analogous connection to the PDF of a correct decoding.

9.4 Performance Issues

There are three important performance metrics for convolutional coding and decoding:

1. How much state and space does the encoder need?
2. How much time does the decoder take?
3. What is the reduction in the bit error rate, and how does that compare with other codes?

The first question is the easiest: the amount of space is linear in K, the constraint length, and the encoder is much easier to implement than the Viterbi decoder. The decoding time depends mainly on K; as described, we need to process $O(2^K)$ transitions each bit time, so the time complexity is exponential in K. Moreover, as described, we can decode the first bits of the message only at the very end. A little thought will show that although a little future knowledge is useful, it is unlikely that what happens at bit time 1000 will change our decoding decision for bit 1, if the constraint length is, say, 6. In fact, in practice the decoder starts to decode bits once it has reached a time step that is a small multiple of the constraint length; experimental data suggests that $5 \cdot K$ message bit times (or thereabouts) is a reasonable decoding window, regardless of how long the parity bit stream corresponding to the message it.

The reduction in error probability and comparisons with other codes is a more involved and detailed issue. The answer depends on the constraint length (generally speaking, larger K has better error correction), the number of generators (larger this number, the lower the rate, and the better the error correction), and the amount of noise. A related question is how much better soft decision decoding is compared to hard decision decoding.

Figure 9-6 shows some representative performance results for a set of codes all of the same code rate (1/2). The top-most curve shows the uncoded probability of bit error. The x axis plots the amount of noise on the channel (lower noise is toward the right; the axis plots the “signal to noise ratio” on a log scale. The units of the x axis is decibels, or dB;
it is defined as $10 \log_{10} \frac{E_b}{N_0}$, where $E - b$ is the signal strength ($0.5^2 = 0.25$ in our case because the difference between a voltage sent and the threshold voltage is 0.5 V) and N_0 is the noise, which for technical reasons is defined as $2\sigma^2$ (σ is the Gaussian noise variance—the factor of 2 is the technical definition).

The important point is that the x axis is proportional to the logarithm of $1/(\text{noise variance})$. The y axis shows the probability of a decoding error on a log scale.

Some observations:

1. The probability of error is roughly the same for the rectangular parity code and hard decision decoding with $K = 3$. The reason is that both schemes essentially produce parity bits that are built from similar amounts of history. In the rectangular parity case, the row parity bit comes from two successive message bits, while the column parity comes from two message bits with one skipped in between. But we also send the message bits, so we’re mimicking a similar constraint length (amount of memory) to the $K = 3$ convolutional code.

2. The probability of error for a given amount of noise is noticeably lower for $K = 4$ compared to $K = 3$.

3. The probability of error for a given amount of noise is dramatically lower with soft decision decoding than hard decision decoding. In fact, $K = 3$ and soft decoding beats $K = 4$ and hard decoding in these graphs. For a given error probability (and signal), the degree of noise that can be tolerated with soft decoding is much higher (about 2.5–3 decibels).

9.5 Summary

From its relatively modest, though hugely impactful, beginnings as a method to decode convolutional codes, Viterbi decoding has become one of the most widely used algorithms in a wide range of fields and engineering systems. Modern disk drives with “PRML” technology to speed-up accesses, speech recognition systems, natural language systems, and a variety of communication networks use this scheme or its variants.

In fact, a more modern view of the soft decision decoding technique described in this lecture is to think of the procedure as finding the most likely set of traversed states in a Hidden Markov Model (HMM). Some underlying phenomenon is modeled as a Markov state machine with probabilistic transitions between its states; we see noisy observations from each state, and would like to piece together the observations to determine the most likely sequence of states traversed. It turns out that the Viterbi decoder is an excellent starting point to solve this class of problems (and sometimes the complete solution).

On the other hand, despite its undeniable success, Viterbi decoding isn’t the only way to decode convolutional codes. For one thing, its computational complexity is exponential in the constraint length, k, because it does require each of these states to be enumerated. When k is large, one may use other decoding methods such as BCJR or Fano’s sequential decoding scheme, for instance.

Convolutional codes themselves are very popular over both wired and wireless links. They are sometimes used as the “inner code” with an outer block error correcting code, but they may also be used with just an outer error detection code.
We are now at the end of the four lectures on error detection and error correcting codes to design point-to-point links over a communication channel. The techniques for error detection and correction constitute a key component of the physical layer of a communication network. In the next few lectures, we will move from the issues of a point-to-point link to sharing a common channel amongst multiple nodes that wish to communicate. Our solution to this problem involves approaches that affect two layers of the network: the physical layer and the so-called link layer (we will study a class of protocols called “media access protocols” that form part of the link layer. We will develop these ideas and then get back to the different layers of the network in a few lectures.
Figure 9-3: The Viterbi decoder in action. This picture shows 4 time steps. The bottom-most picture is the same as the one just before it, but with only the survivor paths shown.
Figure 9-4: The Viterbi decoder in action (continued from Figure 9-3. The decoded message is shown. To produce this message, start from the final state with smallest path metric and work backwards, and then reverse the bits. At each state during the forward pass, it is important to remember the arc that got us to this state, so that the backward pass can be done properly.
Figure 9.5: Branch metric for soft decision decoding.

Figure 9.6: Error correcting performance results for different rate-1/2 codes.