
MIT 6.02 DRAFT Lecture Notes
Fall 2011 (Last update: November 13, 2011)
Comments, questions or bug reports?

Please contact {verghese, hari} at mit.edu

CHAPTER 11
Characterizing LTI Systems in the

Time Domain: Convolution

This chapter will help us understand what else (other than noise, which we studied in
Chapter 5) perturbs a signal transmitted over a communication channel, such as a wire, a
radio, or an acoustic medium. Our goal is to model the noise-free behavior of the channel
by developing suitable input-output descriptions of the channel. This behavior is charac-
terized by the channel not responding immediately when the input signal changes; it takes
a non-zero amount of time for the output signal value to rise or fall to the input value. This
behavior causes a problem called inter-symbol interference; if the input changes before
the output settles down to the most recent previous input, the different symbols (values)
“run into each other” and the output waveform is only a feeble representation of the input.
To mitigate this problem, our approach will be to hold the intended signal level (for any
given bit) for a sufficient period of time, which in our discrete-time model corresponds to
ensuring a sufficiently large number of samples per bit.

To understand channel response and ISI better, we will use a widely used, good approx-
imation for the noise-free behavior, called the linear time-invariant (LTI) model, which
we introduced in the previous chapter. In the LTI model, the response (i.e., output) of the
channel to any input depends only on one function, H, called the unit sample response
function. Given any input signal sequence, x[·] (which is a sequence of numbers x[n], for
different time instances, n, each corresponding to a sample or index), the output y[·] of an
LTI channel is equal to h[·] ∗ x[·], where ∗ is the convolution operator. This result follows
from the principle of superposition, a key property of LTI systems.

We will also introduce a tool called an eye diagram, which allows a communication
engineer to determine whether the number of samples per bit is large enough to permit a
reasonable communication quality in the face of inter-symbol interference.

� 11.1 Distortions on a Channel

Even though there is an enormous variety in communication technologies, they all exhibit
similar types of distorting behavior in response to inputs. Consider a transmitter that

1

2 CHAPTER 11. CHARACTERIZING LTI SYSTEMS IN THE TIME DOMAIN: CONVOLUTION

Figure 11-1: Signals sent over a channel to the receiver take non-zero time to rise and fall to their final
correct values.

sends voltage samples set to V0 = 0 volts for one bit period, then set to V1 = 1 volt for one
bit period, then returns to V0 = 0 volts for one bit period. Most communication channels
exhibit two “imperfections” that distort the transmitted signal at the receiver:

1. A non-zero time to rise and fall. Ideally, the voltage samples at the receiver should
be identical to the voltage samples at the transmitter. Instead, as shown in Fig-
ure 11-1, one finds that when there is a nearly instantaneous transition from V0 volts
to V1 volts at the transmitter, the voltage at the receiver takes much longer to rise
from V0 volts to V1 volts. Analogously, when there is a nearly instantaneous transi-
tion from V1 volts to V0 volts, the voltage at the receiver takes much longer to fall. It
is important to note that if the time between transitions at transmitter is shorter than
rise and fall time at the receiver, the receiver will struggle to correctly infer the value
of the transmitted bits using the voltage samples from the output.

2. “Ringing”. In some cases, voltage samples at the receiver will oscillate before set-
tling to a steady value. In copper wires, for example, this effect can be due to a
“sloshing” back and forth of the energy stored in electric and magnetic fields, or it
can be the result of signal reflections.1 Over radio and acoustic channels, this behav-
ior arises usually from signal reflections. We will not try to determine the physical
source of ringing on a wire, but will instead observe that it happens and deal with it.

1Think of throwing a hard rubber ball against one of two parallel walls. The ball will bounce back and
forth from one wall to the other, eventually settling down.

SECTION 11.1. DISTORTIONS ON A CHANNEL 3

Figure 11-2: A channel showing “ringing”.

Figure 11-2 shows an example of ringing.

Figure 11-3 shows an example of non-ideal channel distortions. In the example, the
transmitter converted the bit sequence 0101110 to voltage samples using ten 1 volt samples
to represent a “1” and ten 0 volt samples to represent a “0”. The sender and receiver both
sample at ten samples per second. In the example, the settling time at the receiver is longer
than the reciprocal of the bit period, and therefore bit sequences with frequent transitions,
like 010, are not received faithfully. In Figure 11-3, at sample number 21, the output voltage
is still ringing in response to the rising wire input transition at sample number 10, and is
also responding to the wire input falling transition at sample number 20. The result is that
the receiver may misidentify the value of the second or third transmitted bit. Note also that
the the receiver will certainly correctly determine that the the fifth and sixth bits have the
value ’1’, as there is no transition between the fourth and fifth, or fifth and sixth, bit. As this
example demonstrates, the slow settling of the channel output implies that the receiver is
more likely to misidentify a bit that differs in value from its immediate predecessors. This
example should also provide the intuition that if the number of samples per bit is “large
enough”, then it becomes easier for the receiver to correctly identify bits because each
sequence of samples has enough time to settle to the correct value (in the absence of noise,
which is of course a random phenomenon that can still confound the receiver).

� 11.1.1 Inter-Symbol Interference

There is a formal name given to the impact of long rise/fall times and long settling times:
inter-symbol interference, or ISI. ISI is a fancy way of saying that “the received samples

4 CHAPTER 11. CHARACTERIZING LTI SYSTEMS IN THE TIME DOMAIN: CONVOLUTION

Sending 0101110

Received	 voltage	 has	
not	 “se1led”	

10	 samples/bit	

Figure 11-3: The effects of rise/fall time and ringing on the received signals.

corresponding to the current bit depend on the values of samples corresponding to preceeding
bits.” The samples don’t behave independently over a communication channel, but af-
fect each other; and therefore bits, or symbols, interfere with one another. Figure 11-4
shows four examples: two for channels with a fast rise/fall and two for channels with a
slower rise/fall.

� 11.2 Superposition and Convolution for LTI Channels

Consider a discrete-time (DT) linear and time-invariant (LTI) system that maps an input
signal x[.] to an output signal y[.]—see the figure in Slide 10.13, which shows what the
input and output values are at some arbitrary integer time instant n. We will also use
other notation on occasion to denote an entire time signal such as x[.], see Slide 10.14,
either writing x[n] (but with the typically unarticulated convention that n ranges over all
integers!), or more simply writing just x.

A DT LTI system is completely characterized by its response to a unit sample function (or
unit pulse function, or unit “impulse” function) δ[n] at the input. Recall that δ[n] takes the
value 1 where its argument n = 0, and the value 0 for all other values of the argument. An
alternative notation for this signal that is sometimes useful for clarity is δ0[.], where the

SECTION 11.2. SUPERPOSITION AND CONVOLUTION FOR LTI CHANNELS 5

Long Bit Period (slow rate) Short Bit Period (Fast Rate)

Figure 11-4: Examples of ISI.

subscript indicates the time instant for which the function takes the value 1; thus δ[n− k],
when described as a function of n, could also be written as the signal δk[.].

The unit sample response h[n], with n taking all integer values, is simply the sequence
of values that y[n] takes when we set x[n] = δ[n], i.e., x[0] = 1 and x[k] = 0 for k 6= 0. The
response h[n] to the elementary input δ[n] can be used to characterize the response of an
LTI system to any input, for the following two reasons:

• An arbitrary signal x[.] can be written as a sum of scaled (or weighted) and shifted
unit sample functions, see Slide 11.26. This is expressed in two ways below:

x[.] = · · ·+ x[−1]δ−1[.] + x[0]δ0[.] + · · ·+ x[k]δk[.] + · · ·
x[n] = · · ·+ x[−1]δ[n + 1] + x[0]δ[n] + · · ·+ x[k]δ[n− k] + · · · (11.1)

• The response of an LTI system to an input that is the scaled and shifted combina-
tion of other inputs is the same scaled combination—or superposition—of the corre-
spondingly shifted responses to these other inputs, see Slide 11.27.

Since the response at time n to the input signal δ[n] is h[n], it follows from the two obser-

6 CHAPTER 11. CHARACTERIZING LTI SYSTEMS IN THE TIME DOMAIN: CONVOLUTION

vations above that the response at time n to the input x[.] is, see Slide 12.2,

y[n] = · · ·+ x[−1]h[n + 1] + x[0]h[n] + · · ·+ x[k]h[n− k] + · · ·

=
∞
∑

k=−∞
x[k]h[n− k] . (11.2)

This operation on the time functions or signals x[.] and h[.] to generate a signal y[.] is
called convolution. The standard symbol for the operation of convolution is ∗, Slide 11.28,
and we use it to write the prescription in Equation (11.2) as y[n] = (x ∗ h)[n]. We will also
simply write y = x ∗ h when that suffices.

A common2 notation for convolution in much—actually, most!—of the engineering lit-
erature is to write y[n] = x[n] ∗ h[n], see Slide 11.29. The index n here is doing triple
duty: in y[n] it marks the time instant at which the result of the convolution is desired;
in x[n] and h[n] it is supposed to denote the entire signals x[.] and h[.] respectively; and
finally its use in x[n] and h[n] is supposed to convey the time instant at which the result
of the convolution is desired. The defect of this notation is made apparent if one substi-
tutes a number for n, so for example y[0] = x[0] ∗ h[0]—where does one go next with the
right hand side? The notation y[0] = (x ∗ h)[0] has no such difficulty. Similarly, the defec-
tive notation might encourage one to “deduce” from y[n] = x[n] ∗ h[n] that, for instance,
y[n− 3] = x[n− 3] ∗ h[n− 3], but there is no natural interpretation of the right hand side
that ! can covert this into a correct statement regarding convolution. So let’s just get used
to the better notation right from the start.

A simple change of variables in Equation (11.2), setting n− k = m, shows that we can
also write

y[n] =
∞
∑

m=−∞
h[m]x[n− k] = (h ∗ x)[n] . (11.3)

Following Example 2 below, we will see an interpretation of the action of an LTI system on
an input signal that naturally arrives at the convolution sum in this latter form rather than
the form introduced originally in Equation(11.2).

The preceding calculation establishes that convolution is commutative, i.e.,

x ∗ h = h ∗ x .

We will mention other properties of convolution later, in connection with series and paral-
lel combinations (or compositions) of LTI systems.

Example 1 Suppose h[n] = (0.5)nu[n], where u[n] denotes the unit step function defined
previously (taking the value 1 where its argument n is non-negative, and the value 0 when
the argument is strictly negative). If x[n] = 3δ[n]− δ[n− 1], then

y[n] = 3(0.5)nu[n]− (0.5)n−1u[n− 1] .

From this we deduce, for instance, that y[n] = 0 for n < 0, and y[0] = 3, y[1] = 0.5, y[2] =
(0.5)2, and in fact y[n] = (0.5)n for all n > 0.

2... but illogical, confusing and misleading!

SECTION 11.2. SUPERPOSITION AND CONVOLUTION FOR LTI CHANNELS 7

The above example illustrates that if h[n] = 0 for n < 0, then the system output cannot
take nonzero values before the input takes nonzero values. Conversely, if the output never
takes nonzero values before the input does, then it must be the case that h[n] = 0 for n < 0.
In other words, this condition is necessary and sufficient for causality of the system.

The summation in Equation (11.2) that defines convolution involves an infinite number
of terms in general, and therefore requires some conditions in order to be well-defined.
One case in which there is no problem defining convolution is when the system is causal
and the input is zero for all times less than some finite start time sx, i.e., when the input is
right-sided, see Slide 11.30. In that case, the infinite sum

∞
∑

k=−∞
x[k]h[n− k]

reduces to the finite sum
n

∑
k=sx

x[k]h[n− k] ,

because x[k] = 0 for k < sx and h[n− k] = 0 for k > n.
The same reduction to a finite sum occurs if h[n] is just right-sided rather than causal,

i.e., is 0 for all times less than some finite start time sh, where sh can be negative (if it isn’t,
then we’re back to the case of a causal system). In that case the preceding sum will run
from sx to n− sh. The infinite sum also reduces to a finite sum when both x[.] and h[.] are
left-sided, i.e., are each zero for times greater than some finite time; this case is not of much
interest in our context. Yet another case in this vein involves an input signal or unit sample
response that is nonzero over only a finite interval of time, in which case it almost doesn’t
matter what the characteristics of the other function are, because the convolution yet again
reduces to running over the terms in a finite time-window.

When there actually are an infinite number of nonzero terms in the convolution sum,
the situation is more subtle. You may recall from discussion of infinite series in your calcu-
lus course that such a sum is well defined—independently of the order in which the terms
are added—precisely when the sum of absolute values (or magnitudes) of the terms in the
infinite series is finite. In this case we say that the series is absolutely summable. In the case
of the convolution sum, what this requires is the following condition:

∞
∑

m=−∞
|h[m]|.|x[n− k]| < ∞ (11.4)

A very important set of conditions, Slide 11.32, under which this constraint is satisfied is
when (i) the magnitude or absolute value of the input at each instant is bounded for all
time by some fixed (finite) number, i.e.,

|x[n]| ≤ µ < ∞ for all n ,

and (ii) the unit sample response h[n] is absolutely summable:

∞
∑

n=−∞
|h[n]| = α < ∞ . (11.5)

8 CHAPTER 11. CHARACTERIZING LTI SYSTEMS IN THE TIME DOMAIN: CONVOLUTION

With this, it follows that

∞
∑

m=−∞
|h[m]|.|x[n−m]| ≤ µα < ∞ ,

so it’s clear that the convolution sum is well defined in this case.
Furthermore, taking the absolute value of the output y[n] in Equation (11.3) shows that

|y[n]| =
∣∣∣ ∞

∑
m=−∞

h[m]x[n−m]
∣∣∣ ≤ µ

∣∣∣ ∞
∑

m=−∞
h[m]

∣∣∣
≤ µ

∞
∑

m=−∞
|h[m]| = µα . (11.6)

Thus absolute summability of the unit sample response suffices to ensure that, with a
bounded input, we not only have a well-defined convolution sum but that the output
is bounded too. It turns out the converse is true also: absolute summability of the unit
sample response is necessary to ensure that a bounded input yields a bounded output.
This fact motivates the name that’s given to an LTI system with absolutely summable unit
sample response h[n], i.e., satisfying Equation (11.5): the system is termed bounded-input
bounded-output (BIBO) stable. As an illustration, the system in Example 1 above is evi-
dently BIBO stable, because ∑n |h[n]| = 1/(1− 0.5) = 2.

Note that since convolution is commutative, the roles of x and h can be interchanged.
It follows that convolution is well-defined if the input x[.] is absolutely summable and the
unit sample response h[.] is bounded, rather than the other way around; and again, the
result of this convolution is bounded.

� 11.2.1 Series and Parallel Composition of LTI Systems

We have already noted that convolution is commutative, i.e., x ∗ h = h ∗ x. It turns out that
it is also associative, i.e.,

(h2 ∗ h1) ∗ x = h2 ∗ (h1 ∗ x) ,

provided each of the involved convolutions is well behaved, Slide 11.31. Thus the
convolutions—each of which involves two functions—can be done in either sequence. The
direct proof is by tedious expansion of each side of the above equation, and we omit it.

These two algebraic properties have immediate implications for the analysis of systems
composed of series or cascade interconnections of LTI subsystems, as in Slide 11.33. The
slide shows three LTI systems that are equivalent, in terms of their input-output properties,
to the system represented at the top. The proof of equivalence simply involves invoking
associativity and commutativity.

A third property of convolution, which is very easy to prove from the definition of
convolution, is that it is distributive over addition:

(h1 + h2) ∗ x = (h1 ∗ x) + (h2 ∗ x) .

Recall that addition of two time-functions, as with h1 + h2 in the preceding equation, is
done pointwise, component by component. Once more, there is an immediate application

SECTION 11.2. SUPERPOSITION AND CONVOLUTION FOR LTI CHANNELS 9

to an interconnection of LTI subsystems, in this case a parallel interconnection, as in Slide
11.34.

Example 2 (Scale-&-Delay System) Consider the system S in Slide 12.3 that scales its
DT input by A and delays it by D > 0 units of time (or, if D is negative, advances it by
−D). This system is linear and time-invariant (as is seen quite directly by applying the
definitions from Chapter 10). It is therefore characterized by its unit sample response,
which is

h[n] = Aδ[n− D] .

We already know from the definition of the system that if the input at time n is x[n], the
output is y[n] = Ax[n− D], but let us check that the general expression in Equation (11.2)
gives us the same answer:

y[n] =
∞
∑

k=−∞
x[k]h[n− k] =

∞
∑

k=−∞
x[k]Aδ[n− k− D] .

As the summation runs over k, we look for the unique value of k where the argument of
the unit sample function goes to zero, because this is the only value of k for which the unit
sample function is nonzero (and in fact equal to 1). Thus k = n− D, so y[n] = Ax[n− D],
as expected.

A general unit sample response h[.] can be represented as a sum—or equivalently, a
parallel combination—of scale-&-delay systems, see Slides 12.3, 12.4:

h[n] = · · ·+ h[−1]δ[n + 1] + h[0]δ[n] + · · ·+ h[k]δ[n− k] + · · · . (11.7)

An input signal x[n] to this system gets scaled and delayed by each of these terms, with the
results added to form the output. This way of looking at the LTI system response yields
the expression

y[n] = · · ·+ h[−1]x[n + 1] + h[0]x[n] + · · ·+ h[m]x[n−m] + · · ·

=
∞
∑

m=−∞
h[m]x[n−m] .

This is the alternate form of convolution sum we obtained in Equation (11.3).

� 11.2.2 Flip-Slide-Dotting Away: Implementing Convolution

The above descriptions of convolution explain why we end up with the expressions in
Equations (11.2) and (11.3) to describe the output of an LTI system in terms of its input
and unit sample response. We will now describe a graphical construction, Slide 12.6, that
helps to visualize and implement these computations, and that is often the simplest way
to think about the effects of convolution.

Let’s examine the expression in Equation (11.2), but the same kind of reasoning works

10 CHAPTER 11. CHARACTERIZING LTI SYSTEMS IN THE TIME DOMAIN: CONVOLUTION

for Equation (11.3). Our task is to implement the computation in the summation below:

y[n0] =
∞
∑

k=−∞
x[k]h[n0 − k] . (11.8)

We’ve written n0 rather than the n we used before just to emphasize that this computation
involves summing over the dummy index k, with the other number being just a parameter,
fixed throughout the computation.

We first plot the time functions x[k] and h[k] on the k axis (with k increasing to the
right, as usual!)3. How do we get h[n0 − k] from this? First note that h[−k] is obtained by
reversing h[k] in time, i.e., a flip of the function across the time origin. To get h[n0 − k],
we now slide this reversed time function, h[−k], to the right by n0 steps if n0 ≥ 0, or to the
left by −n0 steps if n0 < 0. To confirm that this prescription is correct, note that h[n0 − k]
should take the value h[0] at k = n0.

With these two steps done, all that remains is to compute the sum in Equation (11.8).
This sum takes the same form as the familiar dot product of two vectors, one of which has
x[k] as its kth component, and the other of which has h[n0 − k] as its kth component. The
only twist here is that the vectors could be infinitely long. So what this steps boils down
to is taking an instant-by-instant product of the time function x[k] and the time function
h[n0 − k] that your preparatory “flip and slide” step has produced, then summing all the
products.

At the end of all this (and it perhaps sounds more elaborate than it is, till you get a
little practice), what you have computed is the value of the convolution for the single value
n0. To compute the convolution for another value of the argument, say n1, you repeat the
process, but sliding by n1 instead of n0.

To implement the computation in Equation (11.3), you do the same thing, except that
now it’s h[m] that stays as it is, while x[m] gets flipped and slid by n to produce x[n−m],
after which you take the dot product. Either way, the result is evidently the same.

Example 1 revisited Suppose again that h[m] = (0.5)mu[m] and x[m] = 3δ[m]− δ[m− 1].
Then

x[−m] = −δ[−m− 1] + 3δ[−m] ,

which is nonzero only at m =−1 and m = 0. (Sketch this!) As a consequence, sliding x[−m]
to the left, to get x[n−m] when n < 0, will mean that the nonzero values of x[n−m] have
no overlap with the nonzero values of h[m], so the dot product will yield 0. This establishes
that y[n] = (x ∗ h)[n] = 0 for n < 0, in this example.

For n = 0, the only overlap of nonzero values in h[m] and x[n−m] is at m = 0, and we
get the dot product to be (0.5)0 × 3 = 3, so y[0] = 3.

For n > 0, the only overlap of nonzero values in h[m] and x[n−m] is at m = n− 1 and
m = n, and the dot product evaluates to

y[n] = −(0.5)n−1 + 3(0.5)n = (0.5)n−1(−1 + 1.5) = (0.5)n .

3Does the time axis go from right to left when this material is taught in languages that write from right to
left?

SECTION 11.2. SUPERPOSITION AND CONVOLUTION FOR LTI CHANNELS 11

So we have completely recovered the answer we obtained in Example 1. For this example,
our earlier approach—which involved directly thinking about superposition of scaled and
shifted unit sample responses—was at least as easy as the graphical approach here, but in
other situations the graphical construction can yield more rapid or direct insights.

� 11.2.3 Deconvolution

We’ve seen in the previous chapter, specifically in Slides 11.12–11.24, how having an LTI
model for a channel allows us to predict or analyze the distorted output y[n] of the channel,
in response to a superposition of alternating positive and negative steps at the input x[n],
corresponding to a rectangular-wave baseband signal. That analysis was carried out in
terms of the unit step response, s[n], of the channel.

We now briefly explore one plausible approach to undoing the distortion of the channel,
assuming we have a good LTI model of the channel. This discussion is most naturally
phrased in terms of the unit sample response of the channel rather than the unit step re-
sponse. The idea is to process the received baseband signal y[n] through an LTI system, or
LTI filter, that is designed to cancel the effect of the channel.

Consider, as in the example of Slide 12.7, a channel that we model as LTI with unit
sample function

h1[n] = δ[n] + 0.8δ[n− 1] .

This is evidently a causal model, and we might think of the channel as one that transmits
perfectly and instantaneously along some direct path, and also with a one-step delay and
some attenuation along some echo path.

Suppose our receiver filter is to be designed as a causal LTI system with unit sample
response

h2[n] = h2[0]δ[n] + h2[1]δ[n− 1] + · · ·+ h2[k]δ[n− k] + · · · . (11.9)

Its input is y[n], and let us label its output as z[n]. What conditions must h2[n] satisfy
if we are to ensure that z[n] = x[n] for all inputs x[n], i.e., if we are to undo the channel
distortion?

An obvious place to start is with the case where x[n] = δ[n]. If x[n] is the unit sample
function, then y[n] is the unit sample response of the channel, namely h1[n], and z[n] will
then be given by z[n] = (h2 ∗ h1)[n]. In order to have this be the input that went in, namely
x[n] = δ[n], we need

(h2 ∗ h1)[n] = δ[n] . (11.10)

And if we satisfy this condition, then we will actually have z[n] = x[n] for arbitrary x[n],
because

z = h2 ∗ (h1 ∗ x) = (h2 ∗ h1) ∗ x = δ0 ∗ x = x ,

where δ0[.] is our alternative notation for the unit sample function δ[n]. The last equality
above is a consequence of the fact that convolving any signal with the unit sample function
yields that signal back again; this is in fact what Equation (11.1) expresses.

The condition in Equation (11.10) ensures that the convolution carried out by the chan-
nel is inverted or undone, in some sense, by the filter. We might say that the filter de-
convolves the output of the system to get the input (but keep in mind that it does this by
a further convolution!). In view of Equation (11.10), the function h2[.] is also termed the

12 CHAPTER 11. CHARACTERIZING LTI SYSTEMS IN THE TIME DOMAIN: CONVOLUTION

convolutional inverse of h1[.], and vice versa.
So how do we find h2[n] to satisfy Equation (11.10)? It’s not by a simple division of any

kind (though when we get to doing our analysis in the frequency domain shortly, it will
indeed be as simple as division). However, applying the “flip–slide–dot product” mantra
for computing a convolution, we find the following equations for the unknown coefficients
h2[k]:

1 · h2[0] = 1

0.8 · h2[0] + 1 · h2[1] = 0

0.8 · h2[1] + 1 · h2[2] = 0

...

0.8 · h2[k− 1] + 1 · h2[k] = 0

... ,

from which we get h2[0] = 1, h2[1] = −0.8, h2[2] = −0.8h2[1] = (−0.8)2, and in general
h2[k] = (−0.8)ku[k].

Deconvolution as above would work fine if our channel model was accurate, and if
there was no noise in the channel. Even assuming the model is sufficiently accurate, note
that any noise process w[.] that adds in at the output of the channel will end up adding
v[n] = (h2 ∗ w)[n] to the noise-free output, which is z[n] = x[n]. This added noise can
completely overwhelm the solution. For instance, if both x[n] and w[n] are unit samples,
then the output of the receiver’s deconvolution filter has a noise-free component of δ[n]
and an additive noise component of (−0.8)ku[k] that dwarfs the noise-free part. After
we’ve understood how to think about LTI systems in the frequency domain, it will become
much clearer why such deconvolution is so sensitive to noise.

� 11.3 Eye Diagrams

On the face of it, ISI is a complicated effect because the magnitude of bit interference and
the number of interfering bits depend both on the channel properties and on how bits are
represented on the channel. Figure 11-5 shows an example of what the receiver sees (bot-
tom) in response to what the transmitter sent (top) over channel with ISI but no noise. Eye
diagrams (or “eye patterns”) are a useful graphical tool in the toolkit of a communications
system designer or engineer to understand ISI. We will use this tool to determine whether
the number of samples per bit is large enough to enable the receiver to determine “0”s and
“1”s from the demodulated (and filtered) sequence of received voltage samples.

To produce an eye diagram, take all the received samples and put them in an array
of lists, where the number of lists in the array is equal to the number of samples in k bit
periods. In practice, we want k to be a small positive integer like 2 or 3. If there are s
samples per bit, the array is of size k · s.

Each element of this array is a list, and element i of the array is a list of the received
samples y[i], y[i + ks], y[i + 2ks], Now suppose there were no ISI at all (and no noise).
Then all the samples in the ith list corresponding to a transmitted “0” bit would have the
same voltage value, and all the samples in the ith list corresponding to a transmitted “1”

SECTION 11.3. EYE DIAGRAMS 13

Digi$zing	
Threshold	

Figure 11-5: Received signals in the presence of ISI. Is the number of samples per bit “just right”? And
what threshold should be used to determine the transmitted bit? It’s hard to answer these question from
this picture. An eye diagram sheds better light.

would have the same value. Consider the simple case of just a little ISI, where the previ-
ous bit interferes with the current bit, and there’s no further impact from the past. Then
the samples in the ith list corresponding to a transmitted “0” bit would have two distinct
possible values, one value associated with the transmission of a “10” bit sequence, and one
value associated with a “00” bit sequence. A similar story applies to the samples in the ith

list corresponding to a transmitted “1” bit, for a total of four distinct values for the samples
in the ith list. If there is more ISI, there will be more distinct values in the ith list of samples.
For example, if two previous bits interfere, then there will be eight distinct values for the
samples in the ith list. If three bits interfere, then the ith list will have 16 distinct values, and
so on.

Without knowing the number of interfering bits, to capture all the possible interactions,
we must produce the above array of lists for every possible combination of bit sequences
that can ever be observed. If we were to plot this array on a graph, we will see a picture
like the one shown in Figure 11-6. This picture is an eye diagram.

In practice, we can’t produce every possible combination of bits, but what we can do is
use a long random sequence of bits. We can take the random bit sequence, convert it in to
a long sequence of voltage samples, transmit the samples through the channel, collect the
received samples, pack the received samples in to the array of lists described above, and
then plot the result. If the sequence is long enough, and the number of intefering bits is
small, we should get an accurate approximation of the eye diagram.

14 CHAPTER 11. CHARACTERIZING LTI SYSTEMS IN THE TIME DOMAIN: CONVOLUTION

But what is “long enough”?
We can answer this question and develop a less ad hoc procedure by using the proper-

ties of the unit sample response, H. The idea is that the sequence h[0], h[1], . . . , h[n], . . .
captures the complete noise-free response of the channel. In particular, Equation (?? tells
us that only the non-zero values of H matter. If h[i] ≈ 0 for i > `, then we don’t have to
worry about samples more than ` in the past. Now, if the number of samples per bit is
s, then the number of bits in the past that can affect the present bit is no larger than `/s,
where ` is the length of the non-zero part of H. Hence, it is enough to generate all bit pat-
terns of length B = `/s, and send them through the channel to produce the eye diagram. In
practice, because noise can never be eliminated, one might be a little conservative and pick
B = `/n + 2, slightly bigger than what a noise-free calculation would indicate. Because this
approach requires 2B bit patterns to be sent, it might be unreasonable for large values of B;
in those cases, it is likely that s is too small, and one can find whether that is so by sending
a random subset of the 2B possible bit patterns through the channel.

One can estimate ` by sending a unit sample through the channel and seeing how long
it takes before the output is within a threshold of 0. Since noise can never be eliminated,
a more robust approach is to send a unit step through the channel and observe how long
it takes for the output to settle to its true value. One way to estimate this settling time
is to take the unit step response (output) signal sequence, and divide it into overlapping
windows of some size, W. Then, take the mean of the absolute values of each sample in
the window as well as the standard deviation. If the ratio of this standard deviation to
the mean is smaller than a threshold, it means that the output has settled to within that
threshold, and we have an estimate of `: ` is the number of samples between the time
at which the input switched to the end of the first window whose ratio was below the
threshold mentioned above.

Figure 11-6 shows the width of the eye, the place where the diagram has the largest dis-
tinction between voltage samples associated with the transmission of a ’0’ bit and those
associated with the transmission of a ’1’ bit. Another point to note about the diagrams
is the “zero crossing”, the place where the upward rising and downward falling curves
cross. Typically, as the degree of ISI increases (i.e., the number of samples per bit is re-
duced), there is a greater degree of “fuzziness” and ambiguity about the location of this
zero crossing.

The eye diagram is an important tool, useful for verifying two key design decisions:

1. Is the number of samples per bit large enough? If it is large enough, then at the center
of the eye, the voltage samples associated with transmission of a ’1’ are clearly above
the digitization threshold and the voltage samples associated with the transmission
of a ’0’ are clearly below. In addition, the eye must be “open” enough that small
amounts of noise will not lead to errors in converting bit detection samples to bits.
As will become clear later, it is impossible to guarantee that noise will never cause
errors, but we can reduce the likelyhood of error.

2. Has the value of the digitization threshold been set correctly? The digitization thresh-
old should be set to the voltage value that evenly divides the upper and lower halves
of the eye, if 0s and 1s are equally likely. We didn’t study this use of eye diagrams,
but mention it because it is used in practice for this purpose as well.

SECTION 11.3. EYE DIAGRAMS 15

Slow	 rise/fall	 channel	 –	 33	 samples/bit	

3	 bit	 periods	 (99	 samples)	

Width	 of	 eye	 Digi8za8on	 threshold	

“0”s:	 prev	 and	 next	 bits	 vary,	
giving	 different	 waveforms	

“1”s:	 prev	 and	 next	 bits	 vary,	
giving	 different	 waveforms	

Slow	 rise/fall	 channel	 –	 20	 samples/bit	

3	 bit	 periods	 (60	 samples)	

Width	 of	 eye	

Harder	 to	 make	 out	 crossing	 threshold	

Figure 11-6: Eye diagrams for a channel with a slow rise/fall for 33 (top) and 20 (bottom) samples per bit.
Notice how the eye is wider when the number of samples per bit is large.

