
MIT 6.02 DRAFT Lecture Notes
Fall 2011 (Last update: October 17, 2011)
Comments, questions or bug reports?

Please contact hari at mit.edu

CHAPTER 4
Why Digital? Communication

Abstractions and Digital Signaling

This chapter describes analog and digital communication, and the differences between
them. Our focus is on understanding the problems with analog communication and the
motivation for the digital abstraction. We then present basic recipes for sending and re-
ceiving digital data mapped to analog signals over communication links; these recipes are
needed because physical communication links are fundamentally analog in nature at the
lowest level. After understanding how bits get mapped to signals and vice versa, we will
present our simple layered communication model: messages→ packets→ bits→ signals. The
rest of this book is devoted to understanding these different layers and how the interact
with each other.

� 4.1 Sources of Data

The purpose of communication technologies is to empower users (be they humans or ap-
plications) to send messages to each other. We have already seen in Chapters 2 and 3 how
to quantify the information content in messages, and in our discussion, we tacitly decided
that our messages would be represented as sequences of binary digits (bits). We now dis-
cuss why that approach makes sense.

Some sources of data are inherently digital in nature; i.e., their natural and native rep-
resentation is in the form of bit sequences. For example, data generated by computers,
either with input from people or from programs (“computer-generated data”) is natively
encoded using sequences of bits. In such cases, thinking of our messages as bit sequences
is a no-brainer.

There are other sources of data that are in fact inherently analog in nature. Prominent
examples are video and audio. Video scenes and images captured by a camera lens encode
information about the mix of colors (the proportions and intensities) in every part of the
scene being captured. Audio captured by a microphone encodes information about the
loudness (intensity) and frequency (pitch), varying in time. In general, one may view
the data as coming from a continuous space of values, and the sensors capturing the raw

1

2 CHAPTER 4. WHY DIGITAL? COMMUNICATION ABSTRACTIONS AND DIGITAL SIGNALING

data may be thought of as being capable of producing analog data from this continuous
space. In practice, of course, there is a measurement fidelity to every sensor, so the data
captured will be quantized, but the abstraction is much closer to analog than digital. Other
sources of data include sensors gathering information about the environment or device
(e.g., accelerometers on your mobile phone, GPS sensors on mobile devices, or climate
sensors to monitor weather conditions); these data sources could be inherently analog or
inherently digital depending on what they’re measuring.

Regardless of the nature of a source, converting the relevant data to digital form is the
modern way; one sees numerous advertisements for “digital” devices (e.g., cameras), with
the implicit message that somehow “digital” is superior to other methods or devices. The
question is, why?

� 4.2 Why Digital?

There are two main reasons why digital communication (and more generally, building
systems using the digital abstraction) is a good idea:

1. The digital abstraction enables the composition of modules to build large systems.

2. The digital abstaction allows us to us sophisticated algorithms to process data to
improve the quality and performance of the components of a system.

Yet, the digital abstraction is not the natural way to communicate data. Physical com-
munication links turn out to be analog at the lowest level, so we are going to have to
convert data between digital and analog, and vice versa, as it traverses different parts of
the system between the sender and the receiver.

� 4.2.1 Why analog is natural in many applications

To understand why the digital abstraction enables modularity and composition, let us first
understand how analog representations of data work. Consider first the example of a
black-and-white analog television image. Here, it is natural to represent each image as a
sequence of values, one per (x, y) coordinate in a picture. The values represent the lumi-
nance, or “shade of gray”: 0 volts represents “black”, 1 volt represents “white”, and any
value x between 0 and 1 represents the fraction of white in the image (i.e., some shade of
gray). The representation of the picture itself is as a sequence of these values in some scan
order, and the transmission of the picture may be done by generating voltage waveforms
to represent these values.

Another example is an analog telephone, which converts sound waves to electrical sig-
nals and back. Like the analog TV system, this system does not use bits (0s and 1s) to
represent data (the voice conversation) between the communicating parties.

Such analog representations are tempting for communication applications because they
map well to physical link capabilities. For example, when transmitting over a wire, we
can send signals at different voltage levels, and the receiver can measure the voltage to
determine what the sender transmitted. Over an optical communication link, we can send
signals at different intensities (and possibly also at different wavelengths), and the receiver
can measure the intensity to infer what the sender might have transmitted. Over radio

SECTION 4.2. WHY DIGITAL? 3

Copy Copy

Copy Copy

Copy Copy

Copy Copy

 (In Reality!)

input

Figure 4-1: Errors accumulate in analog systems.

and acoustic media, the problem is trickier, but we can send different signals at different
amplitudes “modulated” over a “carrier waveform” (as we will see in later chapters), and
the receiver can measure the quantity of interest to infer what the sender might have sent.

� 4.2.2 So why not analog?

Analog representations seem to map naturally to the inherent capabilities of communica-
tion links, so why not use them? The answer is that there is no error-free communication
link. Every link suffers from perturbations, which may arise from noise (Chapter 5) or
other sources of distortion. These perturbations affect the received signal; every time there
is a transmission, the receiver will not get the transmitted signal exactly, but will get a
perturbed version of it.

These perturbations have a cascading effect. For instance, if we have a series of COPY
blocks that simply copy an incoming signal and re-send the copy, one will not get a perfect
version of the signal, but a heavily perturbed version. Figure 4-1 illustrates this problem
for a black-and-white analog picture sent over several COPY blocks. The problem is that
when an analog input value, such as a voltage of 0.12345678 volts is put into the COPY
block, the output is not the same, but something that might be 0.12?????? volts, where the
“?” refers to incorrect values.

There are many reasons why the actual output differs from the input, including the
manufacturing tolerance of internal components, environmental factors (temperature,
power supply voltage, etc.), external influences such as interference from other transmis-
sions, and so on. There are many sources, which we can collectively think of as “noise”,
for now. In later chapters, we will divide these perturbations into random components
(“noise”) and other perturbations that can be modeled deterministically.

These analog errors accumulate, or cascade. If the output value is Vin ± ε for an input
value of Vin, then placing a number N of such units in series will make the output value

4 CHAPTER 4. WHY DIGITAL? COMMUNICATION ABSTRACTIONS AND DIGITAL SIGNALING

V0

+N -N

volts
V1

+N -N

“0” “1”

Figure 4-2: If the two voltages are adequately spaced apart, we can tolerate a certain amount of noise.

be Vin ± Nε. If ε = 0.01 and N = 100, the output may be off by 100%!
As system engineers, we want modularity, which means we want to guarantee output

values without having to worry about the details of the innards of various components.
Hence, we need to figure out a way to eliminate, or at least reduce, errors at each processing
stage.

The digital signaling abstraction provides us a way to achieve this goal.

� 4.3 Digital Signaling: Mapping Bits to Signals

To ensure that we can distinguish signal from noise, we will map bits to signals using
a fixed set of discrete values. The simplest way to do that is to use a binary mapping (or
binary signaling) scheme. Here, we will use two voltages, V0 volts to represent the bit “0”
and V1 volts to represent the bit “1”.

What we want is for received voltages near V0 to be interpreted as representing a “0”,
and for received voltages near V0 to be interpreted as representing a “1”. If we would like
our mapping to work reliably up to a certain amount of noise, then we need to space V0

and V1 far enough apart so that even noisy signals are interpreted correctly. An example
is shown in Figure 4-2.

At the receiver, we can specify the behavior wih a graph that shows how incoming
voltages are mapped to bits “0” and “1” respectively (Figure 4-3. This idea is intuitive:
we pick the intermediate value, Vth = V0+V1

2 and declare received voltages ≤ Vth as bit “0”
and all other received voltage values as bit “1”. In Chapter 5, we will see when this rule is
optimal and when it isn’t, and how it can be improved when it isn’t the optimal rule. (We’ll
also see what we mean by “optimal” by relating optimality to the probability of reporting
the value of the bit wrongly.)

We note that it would actually be rather difficult to build a receiver that precisely met this
specification because measuring voltages extremely accurately near Vth will be extremely
expensive. Fortunately, we don’t need to worry too much about such values if the values
V0 and V1 are spaced far enough apart given the noise in the system. (See the bottom
picture in Figure 4-3.)

SECTION 4.3. DIGITAL SIGNALING: MAPPING BITS TO SIGNALS 5

V0
volts

V1

“1”

“0”
V1+V0
2

The boundary between “0”
and “1” regions is called the
threshold voltage, Vth

V0
volts

V1

“1”

“0”
V1+V0
2

Receiver can output any value
when the input voltage is in
this range.

Figure 4-3: Picking a simple threshold voltage.

� 4.3.1 Signals in this Course

Each individual transmission signal is conceptually a fixed-voltage waveform held for some
period of time. So, to send bit “0”, we will transmit a signal of fixed-voltage V0 volts
for a certain period of time; likewise, V1 volts to send bit “1”. We will represent these
continuous-time signals using sequences of discrete-time samples. The sample rate is defined
as the number of samples per second used in the system; the sender and receiver at either
end of a communication link will agree on this sample rate in advance. (Each link could of
course have a different sample rate.) The reciprocal of the sample rate is the sample interval,
which is the time between successive samples. For example, 4 million samples per second
implies a sample interval o 0.25 microseconds.

An example of the relation between continuous-time fixed-voltage waveforms (and
how they relate to individual bits) and the sampling process is shown in Figure 4-4.

� 4.3.2 Clocking Transmissions

Over a communication link, the sender and receiver need to agree on a clock rate. The idea
is that periodic events are timed by a clock signal, as shown in Figure 4-5 (top picture).
Each new bit is sent when a clock transition occurs, and each bit has many samples, sent
at a regular rate. We will use the term samples per bit to refer to the number of discrete
voltage samples sent for any given bit. All the samples for any given bit will of course be

6 CHAPTER 4. WHY DIGITAL? COMMUNICATION ABSTRACTIONS AND DIGITAL SIGNALING

Continuous time

Discrete time
sample interval

time

Figure 4-4: Sampling continuous-time voltage waveforms for transmission.

sent at the same voltage value.
How does the receiver recover the data that was sent? If we sent only the samples and

not the clock, how can the receiver figure out what was sent?
The idea is for the receiver to infer the presence of a clock edge every time there is

a transition in the received samples (Figure 4-5, bottom picture). Them using the shared
knowledge of the sample rate (or sample interval), the receiver can extrapolate the remain-
ing edges and infer the first and last sample for each bit. It can then choose the middle
sample to determine the message bit, or more robustly average them all to estimate the bit.

There are two problems that need to be solved for this approach to work:

1. How to cope with differences in the sender and receiver clock frequencies?

2. How to ensure frequent transitions between 0s and 1s?

The first problem is one of clock and data recovery. The second is solved using line
coding, of which 8b/10b coding is a common scheme. The idea is to convert groups of
bits into different groups of bits that have frequent 0/1 transitions. We describe these two
ideas in the next two sections. We also refer the reader to the two lab tasks in Problem Set
2, which describe these two issues and their implementation in considerable detail.

� 4.4 Clock and Data Recovery

In a perfect world, it would be a trivial task to find the voltage sample in the middle of each
bit transmission and use that to determine the transmitted bit, or take the average. Just
start the sampling index at samples per bit/2, then increase the index by samples per bit
to move to the next voltage sample, and so on until you run out of voltage samples.

Alas, in the real world things are a bit more complicated. Both the transmitter and
receiver use an internal clock oscillator running at the sample rate to determine when to
generate or acquire the next voltage sample. And they both use counters to keep track
of how many samples there are in each bit. The complication is that the frequencies of
the transmitter’s and receiver’s clock may not be exactly matched. Say the transmitter is
sending 5 voltage samples per message bit. If the receiver’s clock is a little slower, the
transmitter will seem to be transmitting faster, e.g., transmitting at 4.999 samples per bit.

SECTION 4.4. CLOCK AND DATA RECOVERY 7

(Sample period)(# samples/bit)

Receive samples

Inferred clock edges

Extrapolated clock edges

0 1 1 0 1 1

(Sample interval)(# samples/bit)

Message bits

Transmit clock

Transmit samples

Figure 4-5: Transmission using a clock (top) and inferring clock edges from bit transitions between 0 and 1
and vice versa at the receiver (bottom).

Similarly, if the receiver’s clock is a little faster, the transmitter will seem to be transmitting
slower, e.g., transmitting at 5.001 samples per bit. This small difference accummulates over
time, so if the receiver uses a static sampling strategy like the one outlined in the previous
paragraph, it will eventually be sampling right at the transition points between two bits.
And to add insult to injury, the difference in the two clock frequencies will change over
time.

The fix is to have the receiver adapt the timing of it’s sampling based on where it detects
transitions in the voltage samples. The transition (when there is one) should happen half-
way between the chosen sample points. Or to put it another way, the receiver can look
at the voltage sample half-way between the two sample points and if it doesn’t find a
transition, it should adjust the sample index appropriately.

Figure 4-6 illustrates how the adaptation should work. The examples use a low-to-high
transition, but the same strategy can obviously be used for a high-to-low transition. The
two cases shown in the figure differ in value of the sample that’s half-way between the
current sample point and the previous sample point. Note that a transition has occurred
when two consecutive sample points represent different bit values.

• Case 1: the half-way sample is the same as the current sample. In this case the half-
way sample is in the same bit transmission as the current sample, i.e., we’re sampling
too late in the bit transmission. So when moving to the next sample, increment the

8 CHAPTER 4. WHY DIGITAL? COMMUNICATION ABSTRACTIONS AND DIGITAL SIGNALING

Figure 4-6: The two cases of how the adaptation should work.

index by samples per bit - 1 to move ”back”.

• Case 2: the half-way sample is different than the current sample. In this case the half-
way sample is in the previous bit transmission from the current sample, i.e., we’re
sampling too early in the bit transmission. So when moving to the next sample,
increment the index by samples per bit + 1 to move ”forward”

If there is no transition, simply increment the sample index by samples per bit to move
to the next sample. This keeps the sampling position approximately right until the next
transition provides the information necessary to make the appropriate adjustment.

If you think about it, when there is a transition, one of the two cases above will be true
and so we’ll be constantly adjusting the relative position of the sampling index. That’s fine
– if the relative position is close to correct, we’ll make the opposite adjustment next time.
But if a large correction is necessary, it will take several transitions for the correction to
happen. To facilitate this initial correction, in most protocols the transmission of message

SECTION 4.5. LINE CODING WITH 8B/10B 9

begins with a training sequence of alternating 0- and 1-bits (remember each bit is actually
samples per bit voltage samples long). This provides many transitions for the receiver’s
adaptation circuity to chew on.

� 4.5 Line Coding with 8b/10b

Line coding, using a scheme like 8b/10b, was developed to help address the following
issues:

• For electrical reasons it’s desirable to maintain DC balance on the wire, i.e., that on
the average the number of 0’s is equal to the number of 1’s.

• Transitions in the received bits indicate the start of a new bit and hence are useful in
synchronizing the sampling process at the receiver—the better the synchronization,
the faster the maximum possible symbol rate. So ideally one would like to have
frequent transitions. On the other hand each transition consumes power, so it would
be nice to minimize the number of transitions consistent with the synchronization
constraint and, of course, the need to send actual data! In a signaling protocol where
the transitions are determined by the message content may not achieve these goals.

To address these issues we can use an encoder (called the “line coder”) at the transmitter
to recode the message bits into a sequence that has the properties we want, and use a
decoder at the receiver to recover the original message bits. Many of today’s high-speed
data links (e.g., PCI-e and SATA) use an 8b/10b encoding scheme developed at IBM. The
8b/10b encoder converts 8-bit message symbols into 10 transmitted bits. There are 256
possible 8-bit words and 1024 possible 10-bit transmit symbols, so one can choose the
mapping from 8-bit to 10-bit so that the the 10-bit transmit symbols have the following
properties:

• The maximum run of 0’s or 1’s is five bits (i.e., there is at least one transition every
five bits).

• At any given sample the maximum difference between the number of 1’s received
and the number of 0’s received is six.

• Special 7-bit sequences can be inserted into the transmission that don’t appear in any
consecutive sequence of encoded message bits, even when considering sequences
that span two transmit symbols. The receiver can do a bit-by-bit search for these
unique patterns in the incoming stream and then know how the 10-bit sequences are
aligned in the incoming stream.

Here’s how the encoder works: collections of 8-bit words are broken into groups of
words called a packet. Each packet is sent using the following wire protocol:

• A sequence of alternating 0 bits and 1 bits are sent first (recall that each bit is mul-
tiple voltage samples). This sequence is useful for making sure the receiver’s clock
recovery machinery has synchronized with the transmitter’s clock. These bits aren’t
part of the message; they’re there just to aid in clock recovery.

10 CHAPTER 4. WHY DIGITAL? COMMUNICATION ABSTRACTIONS AND DIGITAL SIGNALING

• A SYNC pattern—usually either 0011111 or 1100000 where the least-significant bit
(LSB) is shown on the left—is transmitted so that the receiver can find the beginning
of the packet.1 Traditionally, the SYNC patterns are transmitted least-significant bit
(LSB) first. The reason for the SYNC is that if the transmitter is sending bits contin-
uously and the receiver starts listening at some point in the transmission, there’s no
easy way to locate the start of multi-bit symbols. By looking for a SYNC, the receiver
can detect the start of a packet. Of course, care must be taken to ensure that a SYNC
pattern showing up in the middle of the packet’s contents don’t confuse the receiver
(usually that’s handled by ensuring that the line coding scheme does not produce
a SYNC pattern, but it is possible that bit errors can lead to such confusion at the
receiver).

• Each byte (8 bits) in the packet data is line-coded to 10 bits and sent. Each 10-bit
transmit symbol is determined by table lookup using the 8-bit word as the index.
Note that all 10-bit symbols are transmitted least-significant bit (LSB) first. If the
length of the packet (without SYNC) is s bytes, then the resulting size of the line-
coded portion is 10s bits, to which the SYNC is added.

Multiple packets are sent until the complete message has been transmitted. Note that
there’s no particular specification of what happens between packets – the next packet may
follow immediately, or the transmitter may sit idle for a while, sending, say, training se-
quence samples.

If the original data in a single packet is s bytes long, and the SYNC is h bits long, then
the total number of bits sent is equal to 10s + h. The “rate” of this line code, i.e., the ratio
of the number of useful message bits to the total bits sent, is therefore equal to 8s

10s+h . (We
will properly define the concept of “code rate” in Chapter 6 more.) If the communication
link is operating at R bits per second, then the rate at which useful message bits arrive is
given by 8s

10s+h · R bits per second with 8b/10b line coding.

� 4.6 Communication Abstractions

Figure 4-7 shown the overall system context, tying together the concepts of the previous
chapters with the rest of this book. The rest of this book is about the oval labeled “COM-
MUNICATION NETWORK”. The simplest example of a communication network is a sin-
gle physical communication link, which we start with.

At either end of the communication link are various modules, as shown in Figure 4-8.
One of these is a Mapper, which maps bits to signals and arranges for samples to be trans-
mitted. There is a counterpart Demapper at the receiving end. As shown in Figure 4-8 is a
Channel coding module, and a counterpart Channel decoding module, which handle errors
in transmission caused by noise.

In addition, a message, produced after source coding from the original data source, may
have to be broken up into multiple packets, and sent over multiple links before reaching
the receiving application or user. Over each link, three abstractions are used: packets, bits,
and signals (Figure 4-8 bottom). Hence, it is convenient to think of the problems in data
communication as being in one of these three “layers”, which are one on top of the other

1In general any other SYNC pattern could also be sent.

SECTION 4.6. COMMUNICATION ABSTRACTIONS 11

Digitize
(if needed)

Original source

Source coding

Source binary digits
(“message bits”)

Bit stream

COMMUNICATION	 NETWORK	

Render/display,
etc.

Receiving app/user

Source decoding

Bit stream

Figure 4-7: The “big picture”.

(packets, bits, and signals). The rest of this book is about these three important abstrac-
tions and how they work together. We do them in the order bits, signals, and packets, for
convenience and ease of exposition and understanding.

12 CHAPTER 4. WHY DIGITAL? COMMUNICATION ABSTRACTIONS AND DIGITAL SIGNALING

Digitize
(if needed)

Original source

Source coding

Source binary digits
(“message bits”)

Bit stream

Render/display,
etc.

Receiving app/user

Source decoding

Bit stream

Channel
Coding

(bit error
correction)

Recv
samples

+
Demapper

Mapper
+

Xmit
samples

Bits Signals
(Voltages)

over
physical link

Channel
Decoding

(reducing or
removing
bit errors)

End-host
computers

Bits

Digitize
(if needed)

Original source

Source coding

Source binary digits
(“message bits”)

Packets

Render/display,
etc.

Receiving app/user

Source decoding

Bit stream

End-host
computers

Packetize

Switch
Switch Switch

Switch

Buffer + stream

LINK
LINK LINK

LINK

Packets à Bits à Signals à Bits à Packets

Bit stream

Figure 4-8: Expanding on the “big picture”: single link view (top) and the network view (bottom).

