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CHAPTER 5
Noise

Liars, d—–d liars, and experts.
—possibly Judge George Bramwell (quoted in 1885), expressing his opinion of
witnesses

There are three kinds of lies: lies, damned lies, and statistics.
—definitely Mark Twain (writing in 1904), in a likely misattribution to Ben-
jamin Disraeli

God does not play dice with the universe.
—Albert Einstein, with probability near 1

In general, many independent factors affect a signal received over a channel. Those
that have a repeatable, deterministic effect from one transmission to another are generally
referred to as distortion. We shall examine a very important class of distortions—those
induced by linear, time-invariant channels—in later chapters. Other factors have effects that
are better modeled as random, and we collectively refer to them as noise. Communication
systems are no exception to the general rule that any system in the physical world must
contend with noise. In fact, noise is a fundamental aspect of all communication systems.

In the simplest binary signaling scheme—which we will invoke for most of our pur-
poses in this course—a communication system transmits one of two voltages, mapping a
“0” to the voltage V0 and mapping a “1” to V1. The appropriate voltage is held steady over
a fixed-duration time slot that is reserved for transmission of this bit, then moved to the
appropriate voltage for the bit associated with the next time slot, and so on. We assume
in this chapter that any distortion has been compensated for at the receiver, so that in an
ideal noise-free case the receiver ends up measuring V0 in any time slot corresponding to
a “0”, and V1 in any slot corresponding to a “1”.

In this chapter we focus on the case where V1 = Vp > 0 and V0 = −Vp, where Vp is
some fixed positive voltage, typically the peak voltage magnitude that the transmitter is
capable of imposing on the communication channel. This scheme is sometimes referred
to as bipolar signaling or bipolar keying. Other choices of voltage levels are possible, of
course.
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2 CHAPTER 5. NOISE

In the presence of noise, the receiver measures a sequence of voltage samples y[k] that
is unlikely to be exactly V0 or V1. To deal with this variation, we described in the previous
chapter a simple and intuitively reasonable decision rule, for the receiver to infer whether
the bit transmitted in a particular time slot was a “0” or a “1”. The receiver first chooses a
single voltage sample from the sequence of received samples within the appropriate time
slot, and then compares this sample to a threshold voltage Vt. Provided “0” and “1” are
equally likely to occur in the sender’s binary stream, it seems reasonable that we should
pick as our threshold the voltage that “splits the difference”, i.e., use Vt = (V0 + V1)/2.
Then, assuming V0 < V1, return “0” as the decision if the received voltage sample is smaller
than Vt, otherwise return “1”.

The receiver could also do more complicated things; for example, it could form an av-
erage or a weighted average of all the voltage samples in the appropriate time slot, and
then compare this average with the threshold voltage Vt. Though such averaging leads in
general to improved performance, we focus on the simpler scheme, where a single well-
selected sample in the time slot is compared with Vt. In this chapter we will analyze the
performance of this decision rule, in terms of the probability of an incorrect decision at the
receiver, an event that would manifest itself as a bit error at the receiver.

The key points of this chapter are as follows:

1. A simple model—and often a good model—for the net effect at the receiver of noise
in the communication system is to assume additive, Gaussian noise. In this model,
each received signal sample is the sum of two components. The first component is
the deterministic function of the transmitted signal that would be obtained in the ab-
sence of noise. (Throughout this chapter, we will assume no distortion in the chan-
nel, so the deterministic function referred to here will actually produce at the receiver
exactly the same sample value transmitted by the sender, under the assumption of
no noise.) The second component is the noise term, and is a quantity drawn from
a Gaussian probability distribution with mean 0 and some variance, independent of
the transmitted signal. The Gaussian distribution is described in more detail in this
chapter.

If this Gaussian noise variable is also independent from one sample to another, we
describe the underlying noise process as white Gaussian noise, and refer to the noise
as additive white Gaussian noise (AWGN); this is the case we will consider. The origin
of the term “white” will become clearer when we examine signals in the frequency
domain, later in this course. The variance of the zero-mean Gaussian noise variable
at any sample time for this AWGN case reflects the power or intensity of the un-
derlying white-noise process. (By analogy with what is done with electrical circuits
or mechanical systems, the term “power” is generally used for the square of a signal
magnitude. In the case of a random signal, the term generally denotes the expected or
mean value of the squared magnitude.)

2. If the sender transmitted a signal corresponding to some bit, b, and the receiver mea-
sured its voltage as being on the correct side of the threshold voltage Vt, then the bit
would be received correctly. Otherwise, the result is a bit error. The probability of
a bit error is an important quantity, which we will analyze. This probability, typi-
cally called the bit error rate (BER), is related to the probability that a Gaussian ran-
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dom variable exceeds some level; we will calculate it using the probability density
function (PDF) and cumulative distribution function (CDF) of a Gaussian random
variable. We will find that, for the bipolar keying scheme described above, when
used with the simple threshold decision rule that was also specified above, the BER
is determined by the ratio of two quantities: (i) the power or squared magnitude, V2

p ,
of the received sample voltage in the noise-free case; and (ii) the power of the noise
process. This ratio is an instance of a signal-to-noise ratio (SNR), and such ratios are
of fundamental importance in understanding the performance of a communication
system.

3. At the signal abstraction, additive white Gaussian noise is often a good noise model.
At the bit abstraction, this model is inconvenient because we would have to keep
going to the signal level to figure out exactly how it affects every bit. Fortunately, the
BER allows us to think about the impact of noise in terms of how it affects bits. In
particular, a simple, but powerful, model at the bit level is that of a binary symmetric
channel (BSC). Here, a transmitted bit b (0 or 1) is interpreted by the receiver as
1− b with probability pe and interpreted as b with probability 1− pe, where pe is the
probability of a bit error (i.e., the bit error rate). In this model, each bit is corrupted
independently of the others, and the probability of corruption is the same for all bits
(so the noise process is an example of an “iid” random process: “independent and
identically distributed”).

� 5.1 Origins of noise

A common source of noise in radio and acoustic communications arises from interfer-
ers who might individually or collectively make it harder to pick out the communication
that the receiver is primarily interested in. For example, the quality of WiFi communi-
cation is affected by other WiFi communications in the same frequency band (later in the
course we will develop methods to mitigate such interference), an example of intereference
from other users or nodes in the same network. In addition, interference could be caused
by sources external to the network of interest; WiFi, for example, if affected by cordless
phones, microwave ovens, Bluetooth devices, and so on that operate at similar radio fre-
quencies. Microwave ovens are doubly troublesome if you’re streaming music over WiFi,
which in the most common mode runs in the 2.4 GHz frequency band today—not only
do microwave ovens create audible disturbances that affect your ability to listen to music,
but they also radiate power in the 2.4 GHz frequency band. This absorption is good for
heating food, but leakage from ovens interferes with WiFi receptions! In addition, wireless
communication networks like WiFi, long-range cellular networks, short-range Bluetooth
radio links, and cordless phones all suffer from fading, because users often move around
and signals undergo a variety of reflections that interfere with each other (a phenomenon
known as “multipath fading”). All these factors cause the received signal to be different
from what was sent.

If the communication channel is a wire on an integrated circuit, the primary source of
noise is capacitive coupling between signals on neighboring wires. If the channel is a wire
on a printed circuit board, signal coupling is still the primary source of noise, but coupling
between wires is largely inductive or carried by unintended electromagnetic radiation.
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In both these cases, one might argue that the noise is not truly random, as the signals
generating the noise are under the designer’s control. However, a signal on a wire in an
integrated circuit or on a printed circuit board will frequently be affected by signals on
thousands of other wires, so approximating the interference using a random noise model
turns out to work very well.

Noise may also arise from truly random physical phenomena. For example, electric
current in an integrated circuit is generated by electrons moving through wires and across
transistors. The electrons must navigate a sea of obstacles (atomic nuclei), and behave
much like marbles traveling through a Pachinko machine. They collide randomly with
nuclei and have transit times that vary randomly. The result is that electric currents have
random noise. In practice, however, the amplitude of the noise is typically several orders
of magnitude smaller than the nominal current. Even in the interior of an integrated cir-
cuit, where digital information is transported on micron-wide wires, the impact of electron
transit time fluctuations is negligible. By contrast, in optical communication channels, fluc-
tuations in electron transit times in circuits used to convert between optical and electronic
signals at the ends of the fiber are the dominant source of noise.

To summarize: there is a wide variety of mechanisms that can be the source of noise;
as a result, the bottom line is that it is physically impossible to construct a noise-free channel.
By understanding noise and analyzing its effects (bit errors), we can develop approaches
to reducing the probability of errors caused by noise and to combat the errors that will
inevitably occur despite our best efforts. We will also learn in a later chapter about a cele-
brated and important result of Shannon: provided the information transmission rate over
a channel is kept below a limit referred to as the channel capacity (determined solely by the
distortion and noise characteristics of the channel), we can transmit in a way that makes
the probability of error in decoding the sender’s message vanish asymptotically as the
message size goes to ∞. This asymptotic performance is attained at the cost of increas-
ing computational burden and increasing delay in deducing the sender’s message at the
receiver. Much research and commercial development has gone into designing practical
methods to come close to this “gold standard”.

� 5.2 Additive White Gaussian Noise: A Simple but Powerful

Model

We will posit a simple model for how noise affects the reception of a signal sent over a
channel and processed by the receiver. In this model, noise is:

1. Additive: Given a received sample value y[k] at the kth sample time, the receiver
interprets it as the sum of two components: the first is the noise-free component y0[k],
i.e., the sample value that would have been received at the kth sample time in the
absence of noise, as a result of the input waveform being passed through the channel
with only distortion present; and the second is the noise component w[k], assumed
independent of the input waveform. We can thus write

y[k] = y0[k] + w[k] . (5.1)
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In the absence of distortion, which is what we are assuming here, y0[k] will be either
V0 or V1.

2. Gaussian: The noise component w[k] is random, but we assume it is drawn at each
sample time from a fixed Gaussian distribution; for concreteness, we take this to be
the distribution of a Gaussian random variable W, so that each w[k] is distributed
exactly as W is. The reason why a Gaussian makes sense is because noise is often
the result of summing a large number of different and independent factors, which
allows us to apply an important result from probability and statistics, called the cen-
tral limit theorem. This states that the sum of independent random variables is well
approximated (under rather mild conditions) by a Gaussian random variable, with
the approximation improving as more variables are summed in.

The Gaussian distribution is beautiful from several viewpoints, not least because it is
characterized by just two numbers: its mean µ, and its variance σ2 or standard deviation
σ. In our noise model, we will assume that the mean of the noise distribution is 0.
This assumption is not a huge concession: any consistent non-zero perturbation is
easy to compensate for. For zero-mean Gaussian noise, the variance, or equivalently
the standard deviation, completely characterizes the noise. The standard deviation σ

may be thought of as a measure of the expected “amplitude” of the noise; its square
captures the expected power.

For noise not to corrupt the digitization of a bit detection sample, the distance be-
tween the noise-free value of the sample and the digitizing threshold should be suf-
ficiently larger than the expected amplitude—or standard deviation—of the noise.

3. White: This property concerns the temporal variation in the individual noise sam-
ples that affect the signal. If these Gaussian noise samples are independent from
one sample to another, the underlying noise process is referred to as white Gaussian
noise. “White” refers to the frequency decomposition of the sequence of noise sam-
ples, and essentially says that the noise signal contains components of equal expected
power at all frequencies. This statement will become clearer later in the course when
we talk about the frequency content of signals.

This noise model is generally given the term AWGN, for additive white Gaussian noise.
We will use this term.

� 5.2.1 Estimating the Noise Parameters

It is often of interest to estimate the noise parameters from measurements; in our Gaussian
model, these are the parameters µ and σ2. If we simply transmit a sequence of “0” bits,
i.e., hold the voltage V0 at the transmitter, and observe the received samples y[k] for k =
0,1, . . . , K− 1, we can process these samples to obtain the statistics of the noise process for
additive noise. Under the assumption of no distortion, and constant (or “stationary”) noise
statistics, and noise samples w[k] = y[k] − V0 that are independent from one sampling
instant to another, we can use the sample mean m to estimate µ, where

m =
1
K

K−1

∑
k=0

w[k] . (5.2)
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The law of large numbers from probability and statistics ensures that as K tends to ∞, the
sample mean m converges to µ, which we have assumed is 0.

With µ = 0, the quantity that is more indicative of the power of the noise is the variance
σ2, which can be estimated by the sample variance s2, given by

s2 =
1
K

K−1

∑
k=0

(w[k]−m)2 . (5.3)

Again, this converges to σ2 as K tends to ∞.

� 5.2.2 The Gaussian Distribution

Let us now understand the Gaussian distribution in the context of our physical commu-
nication channel and signaling process. In our context, the receiver and sender both deal
with voltage samples. The sample y[k] at the receiver has a noise term, w[k], contributing
to it additively, where w[k] is obtained from the following probability density function (PDF),
which specifies a Gaussian distribution:

fW(w) =
1√

2πσ2
e−

(w−µ)2

2σ2 . (5.4)

For zero-mean noise, µ = 0.
The PDF fW(w), which is assumed to govern the distribution of all the noise samples

w[k], specifies the probability that W, or equivalently w[k], takes values in the vicinity of
w. Specifically,

P(w ≤ w[k] ≤ w + dw) ≈ fW(w) dw .

More generally, the probability that w[k] is between two values w1 and w2 is given by

P(w1 < w[k] ≤ w2) =
Z w2

w1

fW(w) dw .

The reason we use the PDF rather than a discrete histogram is that our noise model is
inherently “analog”, taking on any real value in (−∞,∞). For a noise sample that can take
on any value in a continuous range, the natural mathematical tool to use is a continuous-
domain random variable, described via its PDF, or via the integral of the PDF, which is
called the cumulative distribution function (CDF).

It will be helpful to review the basic definitions and properties of continuous-domain
random variables, especially if you aren’t comfortable with these tools. We have provided
a brief recap and tutorial in the appendix near the end of this chapter (§5.7).

� 5.3 Bit Errors

Noise disrupts the quality of communication between sender and receiver because the re-
ceived noisy voltage samples can cause the receiver to incorrectly identify the transmitted
bit, thereby generating a bit error. If we transmit a long stream of known bits and count
the fraction of received bits that are in error, we obtain a quantity that—by the law of large
numbers—asymptotically approaches the bit error rate (BER), which is the probability that



SECTION 5.3. BIT ERRORS 7

any given bit is in error, P(error). This is the probability that noise causes a transmitted “1”
to be reported as “0” or vice versa.

Communication links exhibit a wide range of bit error rates. At one end, high-speed
(multiple gigabits per second) fiber-optic links implement various mechanisms that reduce
the bit error rates to be as low as 1 in 1012. This error rate looks exceptionally low, but a
link that can send data at 10 gigabits per second with such an error rate will encounter a bit
error every 100 seconds of continuous activity, so it does need ways of masking errors that
occur. Wireless communication links usually have errors anywhere between 1 in 103 for
relatively noisy environments, down to to 1 in 107, and in fact allow the communication to
occur at different bit rates; higher bit rates are usually also associated with higher bit error
rates. In some applications, very noisy links can still be useful even if they have bit error
rates as high as 1 in 103 or 102.

We now analyze the BER of the simple binary signaling scheme. Recall the receiver
thresholding rule, assuming that the sender sends V0 volts for “0” and V1 > V0 volts for
“1” and that there is no channel distortion (so in the absence of noise, the receiver would
see exactly what the sender transmits):

If the received voltage sample y < Vt = (V0 + V1)/2 then the received bit is
reported as “0”; otherwise, it is reported as “1”.

For simplicity, we will assume that the prior probability of a transmitted bit being a “0”
is the same as it being a “1”, i.e., both probabilities are 0.5. We will find later that when
these two prior probabilities are equal, the choice of threshold Vt specified above is the one
that minimizes the overall probability of bit error for the decision rule that the receiver is
using. When the two priors are unequal, one can either stick to the same threshold rule
and calculate the bit error probability, or one could calculate the threshold that minimizes
the error probability and then calculate the resulting bit error probability. We will deal
with that case in the next section.

The noise resilience of the binary scheme turns out to depend only on the difference
V1 − V0, because the noise is additive. It follows that if the transmitter is constrained to a
peak voltage magnitude of Vp, then the best choice of voltage levels is V1 = Vp > 0 and
V0 =−Vp, which corresponds to binary keying. The associated threshold is Vt = 0. This is
the case that we analyze now.

As noted earlier, it is conventional to refer to the square of a magnitude as the power, so
V2

p is the power associated with each voltage sample at the receiver, under the assumption
of no distortion, and in the ideal case of no noise. Summing the power of these samples
over all T samples in the time slot associated with a particular bit yields the bit energy
Eb = T ·V2

p . It is thus reasonable to also think of V2
p as the sample energy, which we shall

denote by Es. With this notation, the voltage levels in bipolar keying can be written as
V1 = +

√
Es and V0 = −

√
Es.

Now consider in what cases a bit is incorrectly decided at the receiver. There are two
mutually exclusive possibilities:

1. The sender sends b = 0 at voltage −
√

Es and the value received is > 0; or

2. The sender sends b = 1 at voltage +
√

Es and the value received is < 0.

For a source that is equally likely to send 0’s and 1’s, and given the symmetry of a zero-
mean Gaussian about the value 0, the two events mentioned above have exactly the same proba-
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bilities. Each one of the events has a probability that is half the probability of a zero-mean
Gaussian noise variable W taking values larger than

√
Es (the “half” is because the prob-

ability of b = 0 is 0.5, and similarly for b = 1). Hence the probability of one or the other
of these mutually exclusive events occurring, i.e., the probability of a bit error, is simply
the sum of these two probabilities, i.e., the BER is given by the probability of a zero-mean
Gaussian noise variable W taking values larger than

√
Es. The BER is therefore

BER = P(error) =
1√

2πσ2

Z ∞
√

Es

e−w2/(2σ2) dw . (5.5)

We will denote 2σ2 by N0. It has already been mentioned that σ2 is a measure of the
expected power in the underlying AWGN process. However, the quantity N0 is also often
referred to as the noise power, and we shall use this term for N0 too.1

After a bit of algebra, Equation (5.5) simplifies to

BER = P(error) =
1√
π
·

Z ∞
√

Es/N0

e−v2
dv . (5.6)

This equation specifies the tail probability of a Gaussian distribution, which turns out to
be important in many scientific and engineering applications. It’s important enough to be
tabulated using two special functions called the error function and the complementary error
function, denoted erf(z) and erfc(z) = 1− erf(z) respectively, and defined thus:

erf(z) =
2√
π
·

Z z

−∞
e−v2

dv , (5.7)

and
erfc(z) = 1− erf(z) =

2√
π
·

Z ∞

z
e−v2

dv . (5.8)

One can now easily write the following important (and pleasingly simple) equation for
the BER of our simple binary signaling scheme over an AWGN channel:

BER = P(error) =
1
2

erfc(

√
Es

N0
). (5.9)

Equation (5.9) is worth appreciating and perhaps even committing to memory (at least
for the duration of the course!). But it is more important to understand how we arrived
at it and why it makes sense. The BER for our bipolar keying scheme with the specified
decision rule at the receiver is determined entirely by the ratio Es

N0
. The numerator of this

ratio is the power of the signal used to send a bit, or equivalently the power or energy
Es of the voltage sample selected from the corresponding time slot at the receiver in the
noise-free case, assuming no distortion (as we are doing throughout this chapter). The
denominator of the ratio is the noise power N0 encountered during the reception of the
signal. This ratio is also commonly referred to as the signal-to-noise ratio (SNR) of the

1The factor of 2 between the two uses of the term arises from the fact that under one notational convention
the distribution of expected noise power over frequency is examined over both negative and positive frequen-
cies, while under the other convention it is examined over just positive frequencies—but this difference is
immaterial for us.
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Figure 5-1: The BER of the simple binary signaling scheme in terms of the erfc function. The chart shows
the theoretical prediction and simulation results. Picture courtesy: www.dsplog.com

communication scheme.
The greater the SNR, the lower the BER, and vice versa. Equation (5.9) tells us how the

two quantities relate to one another for our case, and is plotted in Figure 5-1. The shape of
this curve is characteristic of the BER v. SNR curves for many signaling and channel coding
schemes, as we will see in the next few chapters. More complicated signaling schemes will
have different BER-SNR relationships, but the BER will almost always be a function of the
SNR.

� 5.4 BER: The Case of Unequal Priors

When the prior probability of the sender transmitting a “0” is the same as a “1”, the optimal
digitizing threhold is indeed 0 volts, by symmetry, if a “0” is sent at −

√
Es and a “1” at

+
√

Es volts. But what happens when a “0” is more likely than a “1”, or vice versa?
If the threshold remains at 0 volts, then the probability of a bit error is the same as

Equation (5.9). To see why, suppose the prior probability of a “0” is p0 and a “1” is p1 =
1− p0. Then, the probability of bit error can be simplified using a calculation similar to the
previous section to give us

P(error) =
p0

2
erfc(

√
Es/N0) +

p1

2
erfc(

√
Es/N0) =

1
2

erfc(
√

Es/N0). (5.10)

This equation is the same as Equation (5.9). It should make intuitive sense: when the
threshold is 0 volts, the channel has the property that the probability of a “0” becoming a
“1” is the same as the opposite flip. The probability of a “0” flipping depends only on the
threshold used and the signal-to-noise ratio, and not on p0 in this case.
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Note, however, that when p0 6= p1 6= 1/2, the optimal digitizing threshold is not 0 (or,
in general, not half-way between the voltage levels used for a “0” and a “1”). Intuitively,
if zeroes are more likely than ones, the threshold should actually be greater than 0 volts,
because the odds of any given bit being 0 are higher, so one might want to “guess” that a
bit is a “0” even if the voltage level were a little larger than 0 volts. Similarly, if the prior
probability of a “1” were larger, then the optimal threshold will be lower than 0 volts.

So what is the optimal digitizing threshold, assuming the receiver uses a single thresh-
old to decide on a bit? Let’s assume it is Vt, then write an equation for the error probability
(BER) in terms of Vt, differentiate it with respect to Vt, set the derivative to 0, and de-
termine the optimal value. One can then also verify the sign of the second derivative to
establish that the optimal value is indeed a minimum.

Fortunately, this calculation is not that difficult or cumbersome, because Vt will show
up in the limit of the integration, so differentiation is straightforward. We will use the
property that

d
dz

erfc(z) =
d
dz

2√
π

Z ∞

z
e−v2

dv = − 2√
π

e−z2
. (5.11)

The equation for the BER is a direct extension of what we wrote earlier in Equation
(5.10) to the case where we use a threshold Vt instead of 0 volts:

P(error) =
p0

2
erfc

(Vt +
√

Es√
N0

)
+

p1

2
erfc

(√Es −Vt√
N0

)
. (5.12)

Using Equation (5.11) to differentiate the RHS of Equation (5.12) and setting it to 0, we
get the following equation for Vt:

−p0e−(Vt+
√

Es)2/N0 + p1e−(Vt−
√

Es)2/N0 = 0. (5.13)

Solving Equation (5.13) gives us

Vt =
N0

4
√

Es
· loge

p0

p1
. (5.14)

It is straightforward to verify by taking the second derivative that this value of Vt does
indeed minimize the BER.

One can sanity check a few cases of Equation (5.14). When p0 = p1, we know the answer
is 0, and we get that from this equation. When p0 increases, we know that the threshold
should shift toward the positive side, and vice versa, both of which follow from the equa-
tion. Also, when the noise power N0 increases, we expect the receiver to pay less atten-
tion to the received measurement and more attention to the prior (because there is more
uncertainty in any received sample), and the expression for the threshold does indeed ac-
complish that, by moving the threshold further away from the origin and towards the side
associated with the less likely bit.

Note that Equation (5.14) is for the case when a “0” and “1” are sent at voltages sym-
metric about 0. If one had a system where different voltages were used, say V0 and V1,
then the threshold calculation would have to be done in analogous fashion. In this case,
the optimal value would be offset from the mid-point, (V0 + V1)/2.
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10	  log10	  α	
 α	


100	   10000000000	  

90	   1000000000	  

80	   100000000	  

70	   10000000	  

60	   1000000	  

50	   100000	  

40	   10000	  

30	   1000	  

20	   100	  

10	   10	  

0	   1	  

-‐10	   0.1	  

-‐20	   0.01	  

-‐30	   0.001	  

-‐40	   0.0001	  

-‐50	   0.000001	  

-‐60	   0.0000001	  

-‐70	   0.00000001	  

-‐80	   0.000000001	  

-‐90	   0.0000000001	  

-‐100	   0.00000000001	  

Figure 5-2: The dB scale is a convenient log scale; α is the absolute ratio between two energy or power
quantities in this table.

� 5.5 Understanding SNR

The SNR of a communication link is important because it determines the bit error rate;
later, we will find that an appropriate SNR also determines the capacity of the channel
(the maximum possible rate at which communication can occur reliably). Because of the
wide range of energy and power values observed over any communication channel (and
also in other domains), it is convenient to represent such quantities on a log scale. When
measured as the ratio of two energy or power quantities, the SNR is defined on a decibel
scale according to the following formula.

Let α denote the ratio of two energy or power quantities, such as the energy per sample,
Es, and the noise power, N0 = 2σ2. Then, we say that the decibel separation corresponding
to this ratio α is

SNRdb = 10 · log10 α. (5.15)

Figure 5-2 shows some values on the dB scale. A convenient rule to remember is that 3
dB is equivalent to a ratio of about 2, because log10 2 = 0.301.

The decibel (or dB) scale is widely used in many applications. It goes between −∞ and
∞, and succinctly captures ratios that may be multiple powers of ten apart. The online
problem set has some simple calculations to help you get comfortable with the dB scale.
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� 5.6 Channel Model at the Bit Abstraction: Binary Symmetric

Channels

At the signal abstraction, AWGN is a simple and surprisingly good noise model, from a
practical standpoint. At the bit abstraction, this model is inconvenient because we would
have to keep going to the signal level to figure out exactly how it affects every bit. For-
tunately, the BER allows us to think about the impact of noise in terms of how it affects
bits.

A simple and powerful model at the bit level is that of a binary symmetric channel
(BSC). Here, a transmitted bit b (0 or 1) is interpreted by the receiver as 1− b with proba-
bility pe and as b with probability 1− pe, where pe is the probability of a bit error (i.e., the bit
error rate). In this model, each bit is corrupted independently and with equal probability
(which makes this an “iid” random process, for “independent and identically distributed”).

Given a packet of size S bits, it is straightforward to calculate the probability of the
entire packet being received correctly when sent over a BSC with error probability pe:

P(packet received correctly) = (1− pe)S.

The packet error rate, or probability of the packet being incorrect, is 1 minus this quan-
tity, because a packet is correct if and only if all its bits are correct.

Hence,
PER = P(packet received wrongly) = 1− (1− pe)S. (5.16)

When pe << 1, a simple first-order approximation of the PER is possible because (1 +
x)N ≈ 1 + Nx when |x| << 1. That approximation gives the pleasing result that, when
pe << 1,

PER = P(packet received wrongly) ≈ 1− (1− Spe) = Spe. (5.17)

In the next few chapters, we will use the BSC channel model to develop methods to
detect and correct bit errors in packets made up of multiple bits.

� 5.7 Appendix: A Brief Overview/Recap of Continuous Ran-

dom Variables (PDF & CDF)

To understand what a PDF is, let us imagine that we generate 100 or 1000 independent
noise samples and plot each one on a histogram. We might see pictures that look like the
ones shown in Figure 5-3 (the top two pictures), where the horizontal axis is the value of the
noise sample (binned) and the vertical axis is the frequency with which values showed up
in each noise bin. As we increase the number of noise samples, we might see pictures as in
the middle and bottom of Figure 5-3. The histogram is increasingly well approximated by
a continuous curve. Considering the asymptotic behavior as the number of noise samples
becomes very large leads to the notion of a probability density function (PDF).

Formally, let X be the random variable of interest, and suppose X can take on any
value in (−∞,∞). Then, if the PDF of the underlying random variable is the non-negative
function fX(x) ≥ 0, it means that the probability the random variable X takes on a value
between x and x + dx, where dx is a small increment around x, is fX(x) dx. More generally,
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Figure 5-3: Histograms become smoother and more continuous when they are made from an increasing
number of samples. In the limit when the number of samples is infinite, the resulting curve is a probability
density function.

the probability that a random variable X lies in the range (x1, x2] is given by

P(x1 < X ≤ x2) =
Z x2

x1

fX(x) dx . (5.18)

An example of a PDF fX(x) is shown in Figure 5-5.
The PDF is by itself not a probability; the area under any portion of it is a probability.

Though fX(x) itself may exceed 1, the area under any part of it is a probability, and can
never exceed 1. Also, the PDF is normalized to reflect the fact that the probability X takes
some value is always 1, so Z ∞

−∞
fX(x) dx = 1 .

Mean The mean µX of a random variable X can be computed from its PDF as follows:

µX =
Z ∞

−∞
x fX(x) dx. (5.19)

If you think of the PDF as representing a “probability mass” distribution on the real axis,
then the mean is the location of its center of mass; pivoting the real axis at this point will
allow the mass distribution to remain in balance, without tipping to one side or the other.

The law of large numbers states that if x[k] is an iid random process with the underlying
PDF at each time being fX(x), then the sample mean converges to the the mean µX as the
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Figure 5-4: PDF of a uniform distribution.

number of samples approaches ∞:

lim
K→∞

1
K

K−1

∑
k=0

x[k] = µX . (5.20)

Variance The variance is a measure of spread around the mean, and is defined by

σ2
X =

Z ∞

−∞
(x− µX)2 fX(x) dx . (5.21)

(To continue the mass analogy, the variance is analogous to the moment of inertia of the
probability mass. Probability mass that is further away from the center of mass on either
side, i.e., further away from the mean, contributes significantly more to the variance than
mass close to the mean.) Again, under appropriate conditions, the sample variance for an
iid process x[k] converges to the variance. The standard deviation is defined as the square
root of the variance, namely σX.

Cumulative distribution function The integral of the PDF from −∞ to x,

FX(x) =
Z x

−∞
fX(α) dα ,

is called the cumulative distribution function (CDF), because it represents the cumulative
probability that the random variable takes on a value ≤ x. The CDF increases monotoni-
cally (or, more precisely, is monotonically non-decreasing) from 0 when x =−∞ to 1 when
x =∞.

Example: Uniform distribution This simple example may help illustrate the idea of a
PDF better, especially for those who haven’t see this notion before. Suppose that a random
variable X can take on any value between 0 and 2 with equal probability, and always lies
in that range. What is the corresponding PDF?

Because the probability of X being in the range (x, x + dx) is independent of x as long
as x is in [0,2], it must be the case that the PDF fX(x) is some constant, h, for x ∈ [0,2].
Moreover, it must be 0 for any x outside this range. We need to determine h. To do so,
observe that the PDF must be normalized, soZ ∞

−∞
fX(x) dx =

Z 2

0
h dx = 1, (5.22)
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Figure 5-5: PDF of a Gaussian distribution, aka a “bell curve”.

which implies that h = 0.5. Hence, fX(x) = 0.5 when 0 ≤ x ≤ 2 and 0 otherwise. Figure 5-4
shows this uniform PDF.

One can easily calculate the probability that an x chosen from this distribution lies in
the range (0.3,0.7). It is equal to

R 0.7
0.3 (0.5) dx = 0.2.

A uniform PDF also provides a simple example that shows how the PDF, fX(x), could
easily exceed 1. A uniform distribution whose values are always between 0 and δ, for some
δ < 1, has fX(x) = 1/δ, which is always larger than 1. To reiterate a point made before: the
PDF fX(x) is not a probability, it is a probability density, and as such, could take on any non-
negative value. The only constraint on it is that the total area under its curve (the integral
over the possible values it can take) is 1.

As an exercise, you might try to determine the PDF, mean and variance of a random
variable that is uniformly distributed in the arbitrary (but finite-length) interval [a, b].

Example: Gaussian distribution The PDF for a Gaussian random variable X is given by

fW(w) =
1√

2πσ2
X

e−(x−µX)2/(2σ2
X) . (5.23)

This equation is plotted in Figure 5-5, which makes evident why a Gaussian distribution
is colloquially referred to as a “bell curve”. The curve tapers off to 0 rapidly because of
the e−x2

dependence. The form of the expression makes clear that the PDF is symmetric
about the value µX, which suffices to deduce that this parameter is indeed the mean of
the distribution. It is an exercise in calculus (which we leave you to carry out, if you are
sufficiently interested in the details) to verify that the area under the PDF is indeed 1 (as it
has to be, for any PDF), and that the variance is in fact the parameter labeled as σ2

X in the
above expression. Thus the Gaussian PDF is completely characterized by the mean and
the variance of the distribution.

Changing the mean simply shifts the distribution to the left or right on the horizontal
axis, as shown in the pictures on the left of Figure 5-6. Increasing the variance is more
interesting from a physical standpoint; it widens (or fattens) the distribution and makes it
more likely for values further from the mean to be selected, compared to a Gaussian with
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Figure 5-6: Changing the mean of a Gaussian distribution merely shifts the center of mass of the distribu-
tion because it just shifts the location of the peak. Changing the variance widens the curve.

a smaller variance. A Gaussian random variable with a wider distribution (i.e., a larger
variance) has more “power” compared to a narrower one.
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