

Lecture 1, Slide #1

· Huffman codes

6.02 Fall 2011

Duties	Name	Email at mit.edu	Office	Phone
Lectures (office hrs by	Hari Balakrishnan	hari	32-G940	x3-8713
appointment)	George Verghese	verghese	10-140K	x3-4612
Recitations	Paul Ampadu	ampadu		х
	Karl Berggren	berggren	36-219	x4-0272
	Sidhant Misra	sidhant		
TAs (check lab hours link)	Mukul Agarwal	magar		
	Jason Cloud	jcloud		
	Shuo Deng	shuodeng		
	Lyla Fischer	fischerl		
	Rui Li	rui		
	Ruben Madrigal	madrigal		
	Surapap Rayanokorn	surapap		
	Xiawa Wang	xiawaw		

6.02 Fall 2011 Home Announcements Handouts **Lectures **PSets **Tutorial Problems	INTRODUCTION TO EECS II DIGITAL COMMUNICATION SYSTEMS		
*MIT cert required * On-line grades * PSets: 1, Help queue * Lab Hours * Staff only Course info	Week of September 5, 2011 This week's to-do list: Wed: First Lecture Thu: First Recitation Next week's to-do list: Wed: PSet #1 due Thu. Fit: Lab checkoff with your interviewer		
Course calendar Course description SW installation Python Numpy Matplotlib Previous terms	The first meeting of 6.02 will be at 2p in room 34-101 on Wednesday, 9/7. Consult the Course Calendar for a detailed schedule of lectures, recitations, labs and quizzes. Recitation meetings start Thursday, 9/8. Recitation assignments: As a starting point, please attend the section assigned to you by the Registrar.		
	Please take a moment to read the <u>Course Info</u> page which describes course mechanics and policies. See <u>Autoconcentals</u> to read previous messages.		

Questions?

- Email 6.02-staff@mit.edu
- Or better still, sign up for 6.02 Piazza at http://piazza.com/class#fall2011/602
- BTW: PSet #1 is now online, due by 9/15 at 6 am ("midnight" Wed 9/14)

6.02 Fall 2011

Lecture 1, Slide #4

Information Resolves Uncertainty

Information is a mathematical quantity that depends on the probability of occurrence of a particular event, which we might think of as a sequence of one or more *symbols*.

Nice: "It was 75 degrees F in Boston on Jan 30"

Awful: "It was 30 degrees F in Boston on Jan 30"

Which statement conveys more information?

High probability of event → less information Low probability of event → more information

Lecture 1, Slide #13

6.02 Fall 2011

Information in Equi-Probable Events

Q: Suppose we have N equi-probable events. How much information have you learned if tell you that a specific event occurred?

A: $I = \log_2 (1 / (1/N)) = \log_2 N$ bits.

Q: Suppose we have N equi-probable events. How much information have you learned if tell you that one of M equally probable events occurred from this set of N events?

A: P(the event that occurred being one of M events) = M/NTherefore, $I = log_2 (1 / (M/N)) = log_2 (N/M)$ bits.

Information: A measure of the uncertainty of an event.

6.02 Fall 2011 Lecture 1, Slide #15

Measuring Information

Based on work by Hartley, Claude Shannon, the father of information theory, defined the information, *I*, associated with an event (message) of probability p as

$$I = \log_2\left(\frac{1}{p}\right)$$

The unit of measurement is the bit (binary digit: "0" or "1").

1 bit corresponds to $p = \frac{1}{2}$, e.g., the probability of a heads or tails when flipping a fair coin.

This lines up with our intuition: we can encode the result of a single coin flip using just 1 bit: say "1" for heads, "0" for tails. Encoding 25 flips of a fair coin requires 25 bits.

6.02 Fall 2011

Lecture 1, Slide #14

Examples

We're drawing cards at random from a standard 52-card deck:

Q. If I tell you the card is a \diamondsuit , how many bits of information have you received?

A. We've gone from N=52 possible cards down to M=13 possible cards, so the amount of info received is $log_2(52/13) = 2$ bits.

This makes sense, we can encode one of the 4 (equally probable) suits using 2 bits, e.g., $00=\heartsuit$, $01=\diamondsuit$, $10=\diamondsuit$, $11=\diamondsuit$.

Q. If instead I tell you the card is a 7, how much info?

A. N=52, M=4, so info = $\log_2(52/4) = \log_2(13) = 3.7$ bits

6.02 Fall 2011 Lecture 1. Slide #16

Example (cont'd.)

Q. If I tell you the card is the 7 of spades, how many bits of information have you received?

A. We've gone from N=52 possible cards down to M=1 possible cards, so the amount of info received is $\log_2(52/1)$ = 5.7 bits

Note that if the events are *independent*, then information is additive (5.7 = 3 + 2.7)!

But additivity holds only when the separate pieces of information are independent: P(A and B) = P(A)P(B)

6.02 Fall 2011

Lecture 1, Slide #17

Okay, why do we care about entropy?

Entropy tells us the average amount of information that must be delivered in order to resolve all uncertainty.

Shannon showed that entropy is a *lower bound* on the number of bits that must, on average, be used to encode our messages.

Achieving the entropy bound is the "gold standard" for an encoding: entropy gives us a metric to measure encoding effectiveness.

.02 Fall 2011 Lecture 1, Slide #19

Expected Information: Entropy

Now consider a message transmitting the outcome of an event that has a set of possible outcomes, where we know the probability of each outcome.

Formally, model a random variable X with possible values $\{x_1, ..., x_n\}$ and their associated probabilities $p(x_1), ..., p(x_n)$.

The *entropy* H of a discrete random variable X is the expected value of the information content of X:

$$H(X) = E(I(X)) = \sum_{i=1}^{n} p(x_i) \log_2 \left(\frac{1}{p(x_i)}\right)$$

6.02 Fall 2011 Lecture 1, Slide #18

SOURCE CODES (Or, COMPRESSION)

6.02 Fall 2011

Lecture 1, Slide #20

Fixed-length Encodings

An obvious choice for encoding equally probable outcomes is to choose a fixed-length code that has enough sequences to encode the necessary information

- 96 printing characters → 7-bit ASCII
- Unicode characters → UTF-16
- 10 decimal digits → 4-bit BCD (binary coded decimal)

Fixed-length codes have some advantages:

- · They are "random access" in the sense that to decode the nth message symbol one can decode the nth fixedlength sequence without decoding sequence 1 through
- Table lookup suffices for encoding and decoding

6.02 Fall 2011

Lecture 1, Slide #21

Improving on Fixed-length Encodings

$choice_i$	p_i	$log_2(1/p_i)$
"A"	1/3	1.58 bits
"B"	1/2	1 bit
"C"	1/12	3.58 bits
"D"	1/12	3.58 bits

The expected information content in a choice is given by the entropy:

= (.333)(1.58) + (.5)(1) + (2)(.083)(3.58) = 1.626 bits

Can we find an encoding where transmitting 1000 choices requires 1626 bits on the average?

The "natural" fixed-length encoding uses two bits for each choice, so transmitting the results of 1000 choices requires 2000 bits.

6.02 Fall 2011 Lecture 1, Slide #22

Variable-length encodings (David Huffman, MIT 1950)

Use shorter bit sequences for high probability choices, longer sequences for less probable choices

choice	e_i	p_i	encoding
"A"		1/3	10
"B"		1/2	0
"C"		1/12	110
"D"		1/12	111

Expected length =(.333)(2)+(.5)(1)+(2)(.083)(3) = 1.666 bits

Transmitting 1000 choices takes an average of 1666 bits... better but not optimal

Lecture 1, Slide #23

Another Variable-length Code (not!)

Here's an alternative variable-length for the example on the previous page:

Letter	Encoding	
A	0	
В	1	
C	00	
D	0.1	

Why isn't this a workable code?

The expected length of an encoded message is

$$(.333+.5)(1) + (.083 + .083)(2) = 1.22$$
 bits

which even beats the entropy bound ©

6.02 Fall 2011 Lecture 1, Slide #24

Huffman's Coding Algorithm

- Begin with the set S of symbols to be encoded as binary strings, together with the probability p(s) for each symbol s in S. The probabilities sum to 1 and measure the frequencies with which each symbol appears in the input stream. In the example from the previous slide, the initial set S contains the four symbols and their associated probabilities from the table.
- Repeat the following steps until there is only 1 symbol left in S:
 - Choose the two members of S having lowest probabilities.
 Choose arbitrarily to resolve ties.
 - Remove the selected symbols from S, and create a new node of the decoding tree whose children (sub-nodes) are the symbols you've removed. Label the left branch with a "0", and the right branch with a "1".
 - Add to S a new symbol that represents this new node. Assign this new symbol a probability equal to the sum of the probabilities of the two nodes it replaces.

6.02 Fall 2011 Lecture 1, Slide #25

Huffman Codes - the final word?

- Given static symbol probabilities, the Huffman algorithm creates an optimal encoding when each symbol is encoded separately and symbols are from an iid distribution.

 (Optimal ≡ no other encoding will have a shorter expected message length)
- Huffman codes have the biggest impact on average message length when some symbols are substantially more likely than other symbols.
- You can improve the results by adding encodings for symbol pairs, triples, quads, etc. From example code:
 - Pairs: 1.646 bits/sym, Triples: 1.637, Quads 1.633, ... But the number of possible encodings quickly becomes intractable.
- Symbol probabilities change message-to-message, or even within a single message.
- · Can we do adaptive variable-length encoding?

- Tune in next time!

Lecture 1, Slide #27

Huffman Coding Construction

- Initially $S = \{ (A, 1/3) (B, 1/2) (C, 1/12) (D, 1/12) \}$
- · First iteration
 - Symbols in S with lowest probabilities: C and D
 - Create new node
 - Add new symbol to $S = \{ (A, 1/3) (B, 1/2) (CD, 1/6) \}$

- Symbols in S with lowest probabilities: A and CD
- Create new node
- Add new symbol to $S = \{ (B, 1/2) (ACD, 1/2) \}$
- · Third iteration
 - Symbols in S with lowest probabilities: B and ACD
 - Create new node
 - Add new symbol to S = { (BACD, 1) }
- Done

6.02 Fall 2011 Lecture 1, Slide #26