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Greatest Engineering Achievements
oF THE 20'™ CENTURY Networked Apps are Everywhere

National Academy of Engineering (http://www.greatachievements.org/)

Welcome!

How many of the 20th century's greatest engineering
achievements will you use today? A car? Computer?
Telephone? Explore our list of the top 20 achievements and
learn how engineering shaped a century and changed the
world.

Public Safety

Healthcare Transportation

. Electrification . Highways
. Automobile . Spacecraft
. Airplane
. Water Supply and Distribution . Imaging
Electronics . Household Appliances
. Health Technologies
Agricuiturai-iiechanization . Petroleum and
Petrochemical Technologies
. Laser and Fiber Optics
. Air Conditioning . Nuclear Technologies
6.0 and Refrigeration . High-performance Materials & 6.02 Fall 2011

Sensor-rich
systems

Smart Homes

The Internet

Built

azing Infrastrugture

GLUMETfre 1, Slide #7 6.02 Fall 2011 Lecture 1, Slide #8
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6.02 Roadmap

Understanding information, encoding messages
* Source coding for compression
* Communication abstractions: packets, bits, signals

Point-to-point communication channels:

* Bits: Noise, bit errors, error correction

* Signals: Frequency content & response, LTI model,
modulation/demodulation

Multi-node and multi-hop networks:

* Packets: MAC protocols, packet switching, routing,
reliable transport

Engineering Goals

If you were asked to design a communication
network, what would your most
important goals be?

1. Reliability
2. Efficient sharing (= cost-effectiveness)
3. Scalability
4. Energy-efficiency, ...

INFORMATION
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Information Resolves Uncertainty

Information is a mathematical quantity that
depends on the probability of occurrence of a
particular event, which we might think of as a
sequence of one or more symbols.

Nice: “It was 75 degrees F in Boston on Jan 30”
Awful: “TIt was 30 degrees F in Boston on Jan 30”
Which statement conveys more information?

High probability of event - less information
Low probability of event - more information

Measuring Information

Based on work by Hartley, Claude Shannon, the father of
information theory, defined the information, I, associated with
an event (message) of probability p as

I=log2(1)
p

The unit of measurement is the bit (binary digit: “0” or “17”).

S 1 bit corresponds to p = '%, e.g., the
/ Yy, probability of a heads or tails when
Z e flipping a fair coin.
4“\‘
/ This lines up with our intuition: we can
/ encode the result of a single coin flip
‘L/ using just 1 bit: say “1” for heads, “0”

for tails. Encoding 25 flips of a fair coin
requires 25 bits.

Information in Equi-Probable Events

Q: Suppose we have N equi-probable events. How much
information have you learned if tell you that a specific event
occurred?

A: I=1log, (1 / (1/N)) = log, N bits.
Q: Suppose we have N equi-probable events. How much
information have you learned if tell you that one of M equally

probable events occurred from this set of N events?

A: P(the event that occurred being one of M events) = M/N
Therefore, I =log, (1 / (M/N)) = log, (N/M) bits.

Information: A measure of the uncertainty of an event.

Examples

We’re drawing cards at random from a standard 52-card deck:

Q. If I tell you the card is a &, how many bits of information
have you received?

A. We've gone from N=52 possible cards down to M=13 possible
cards, so the amount of info received is log,(52/13) = 2 bits.

This makes sense, we can encode one of the 4 (equally
probable) suits using 2 bits, e.g., 00=0, 01=0, 10=%, 11=04.

Q. If instead I tell you the card is a 7, how much info?

A. N=52, M=4, so info = log,(52/4) = log,(13) = 3.7 bits
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Example (cont’d.)

Q. If I tell you the card is the 7 of spades, how many bits of
information have you received?

A. We've gone from N=52 possible cards down to M=1
possible cards, so the amount of info received is log,(52/1) =
5.7 bits.

Note that if the events are independent, then information is
additive (5.7 = 3 + 2.7)!

But additivity holds only when the separate pieces of
information are independent: P(A and B) = P(A)P(B)

Expected Information: Entropy

Now consider a message transmitting the outcome of an event
that has a set of possible outcomes, where we know the
probability of each outcome.

Formally, model a random variable X with possible values
X4, ..., X,} and their associated probabilities p(x,), ..., P(X,).

The entropy H of a discrete random variable X is the expected
value of the information content of X:

\ 1
= I = . 1 )
H(X)=E((X)) El p(x;)log x)

Okay, why do we care about entropy?

Entropy tells us the average amount of information that must
be delivered in order to resolve all uncertainty.

Shannon showed that entropy is a lower bound on the number
of bits that must, on average, be used to encode our messages.

Achieving the entropy bound is the “gold standard” for an
encoding: entropy gives us a metric to measure encoding
effectiveness.

SOURCE CODES
(Or, COMPRESSION)
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Fixed-length Encodings

An obvious choice for encoding equally probable outcomes
is to choose a fixed-length code that has enough sequences
to encode the necessary information

* 96 printing characters — 7-bit ASCII
* Unicode characters = UTF-16
* 10 decimal digits — 4-bit BCD (binary coded decimal)

Fixed-length codes have some advantages:

* They are “random access” in the sense that to decode
the n'® message symbol one can decode the nth fixed-
length sequence without decoding sequence 1 through
n-1.

* Table lookup suffices for encoding and decoding

Improving on Fixed-length Encodings

choice; p; log,(1/p;)
“A” 1/3 1.58 bits
“B” 1/2 1 bit
“er 1/12 | 3.58 bits
“D” 1/12 3.58 bits

The expected information content in a choice is given by the
entropy:
=(.333)(1.58) + (.5)(1) + (2)(.083)(3.58) = 1.626 bits

Can we find an encoding where transmitting 1000 choices
requires 1626 bits on the average?

The “natural” fixed-length encoding uses two bits for each choice,
so transmitting the results of 1000 choices requires 2000 bits.

Variable-length encodings

o (David Huffman, MIT 1950)
&) Use shorter bit sequences for high probability choices,
longer sequences for less probable choices

BC A BA D
choice; pi encoding Expected length
" =(-333)(2)+(.5)(1)+(2)(.083)(3)
A 1/3 10 = 1.666 bits
“B” 1/2 0
/ Transmitting 1000
“c” 1/12 110 choices takes an
average of 1666 bits...
“D” 1/12 111 better but not optimal

Huffman Code Tree

Another Variable-length Code (not!)

Here’s an alternative variable-length for the example on the
previous page:

Letter Encoding

A 0
B 1
C 00
D 01

Why isn’t this a workable code?
The expected length of an encoded message is
(.333+.5)(1) + (.083 + .083)(2) = 1.22 bits

which even beats the entropy bound ©
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Huffman’s Coding Algorithm

Begin with the set S of symbols to be encoded as binary strings,
together with the probability p(s) for each symbol s in S. The
probabilities sum to 1 and measure the frequencies with which
each symbol appears in the input stream. In the example from the
previous slide, the initial set S contains the four symbols and their
associated probabilities from the table.

Repeat the following steps until there is only 1 symbol left in S:

— Choose the two members of S having lowest probabilities.
Choose arbitrarily to resolve ties.

— Remove the selected symbols from S, and create a new node of
the decoding tree whose children (sub-nodes) are the symbols
you've removed. Label the left branch with a “0”, and the right
branch with a “1”.

— Add to S a new symbol that represents this new node. Assign
this new symbol a probability equal to the sum of the
probabilities of the two nodes it replaces.

Huffman Coding Construction

Initially S = { (A, 1/3) (B, 1/2) (C, 1/12) (D, 1/12)}
First iteration

— Symbols in S with lowest probabilities: C and D CD

— Create new node W
— Add new symbol to S = { (A, 1/3) (B, 1/2) (CD, 1/6)} € D
Second iteration ACD

— Symbols in S with lowest probabilities: A and CD 0 1

— Create new node A%

— Add new symbol to S = { (B, 1/2) (ACD, 1/2)} C D
0 1
0 1

Third iteration /\

— Symbols in S with lowest probabilities: B and ACD B

— Create new node A O 1
— Add new symbol to S = { (BACD, 1) } C D
Done

Huffman Codes - the final word?

Given static symbol probabilities, the Huffman algorithm
creates an optimal encoding when each symbol is encoded
separately and symbols are from an iid distribution.

(Optimal = no other encoding will have a shorter expected
message length)

Huffman codes have the biggest impact on average message
length when some symbols are substantially more likely than
other symbols.

You can improve the results by adding encodings for symbol
pairs, triples, quads, etc. From example code:

Pairs: 1.646 bits/sym, Triples: 1.637, Quads 1.633, ...
But the number of possible encodings quickly becomes
intractable.

Symbol probabilities change message-to-message, or even
within a single message.

Can we do adaptive variable-length encoding?

— Tune in next time!
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