
9/12/11

1

6.02 Fall 2011 Lecture 2, Slide #1

6.02 Fall 2011
Lecture #2

•  Properties and limitations of Huffman codes
•  Adaptive variable-length codes: LZW

6.02 Fall 2011 Lecture 2, Slide #2

Example from Last Lecture

choicei pi log2(1/pi)
pi ∗

log2(1/pi)
Huffman
encoding

Expected
length

“A” 1/3 1.58 bits 0.528 bits 10 0.667 bits

“B” 1/2 1 bit 0.5 bits 0 0.5 bits

“C” 1/12 3.58 bits 0.299 bits 110 0.25 bits

“D” 1/12 3.58 bits 0.299 bits 111 0.25 bits

1.626 bits 1.667 bits

16 Pairs: 1.646 bits/sym
64 Triples: 1.637 bits/sym
256 Quads: 1.633 bits/sym

Entropy is 1.626 bits/symbol, expected length of Huffman
encoding is 1.667 bits/symbol.

How do we do better?

6.02 Fall 2011 Lecture 2, Slide #3

Huffman Codes – the final word?
•  Given static symbol probabilities, the Huffman algorithm

creates an optimal encoding when each symbol is encoded
separately. (optimal ≡ no other encoding will have a shorter
expected message length)

•  Huffman codes have the biggest impact on average message
length when some symbols are substantially more likely than
other symbols.

•  You can improve the results by adding encodings for symbol
pairs, triples, quads, etc. But the number of possible
encodings quickly becomes intractable.

•  Symbol probabilities change message-to-message, or even
within a single message.

•  Can we do adaptive variable-length encoding?

6.02 Fall 2011 Lecture 2, Slide #4

Adaptive Variable-length Codes
• Algorithm first developed by Lempel

and Ziv, later improved by Welch. Now
commonly referred to as the “LZW
Algorithm”

• As message is processed a “string
table” is built which maps symbol
sequences to an N-bit fixed-length code.
Table size = 2N

• Transmit table indices, usually shorter
than the corresponding string →
compression!

• Note: String table can be reconstructed
by the decoder based on information in
the encoded stream – the table, while
central to the encoding and decoding
process, is never transmitted!

0 0

1 1

2 2

3 3

4 4

… …

252 252

253 253

254 254

255 255

256

257

258

259

260

261

262

…

2N-1

First 256 table
entries hold all
the one-byte
strings.

Remaining
entries are
filled with
sequences from
the message.
When full,
reinitialize
table…

9/12/11

2

6.02 Fall 2011 Lecture 2, Slide #5

LZW Encoding
STRING = get input symbol
WHILE there are still input symbols DO
 SYMBOL = get input symbol
 IF STRING + SYMBOL is in the string table THEN
 STRING = STRING + SYMBOL
 ELSE
 output the code for STRING
 add STRING + SYMBOL to the string table
 STRING = SYMBOL
 END
END

output the code for STRING

From http://marknelson.us/1989/10/01/lzw-data-compression/

1.  Accumulate message bytes in S as long as S appears in table.
2.  When S+b isn’t in table: send code for S, add S+b to table.
3.  Reinitialize S with b, back to step 1.

6.02 Fall 2011 Lecture 2, Slide #6

Example: Encode “abbbabbbab…”
1.  Read a; string = a

2.  Read b; ab not in table
output 97, add ab to table, string = b

3.  Read b; bb not in table
output 98, add bb to table, string = b

4.  Read b; bb in table, string = bb

5.  Read a; bba not in table
output 257, add bba to table, string = a

6.  Read b, ab in table, string = ab

7.  Read b, abb not in table
output 256, add abb to table, string = b

8.  Read b, bb in table, string = bb

9.  Read a, bba in table, string = bba

10. Read b, bbab not in table
output 258, add bbab to table, string = b

256

257

258

259

260

261

262

ab

bb

bba

abb

bbab

6.02 Fall 2011 Lecture 2, Slide #7

Encoder Notes
•  The encoder algorithm is greedy – it’s designed to find the

longest possible match in the string table before it makes a
transmission.

•  The string table is filled with sequences actually found in the
message stream. No encodings are wasted on sequences not
actually found in the file.

•  Note that in this example the amount of compression
increases as the encoding progresses, i.e., more input bytes
are consumed between transmissions.

•  Eventually the table will fill and then be reinitialized,
recycling the N-bit codes for new sequences. So the encoder
will eventually adapt to changes in the probabilities of the
symbols or symbol sequences.

6.02 Fall 2011 Lecture 2, Slide #8

LZW Decoding

Read CODE
output CODE
STRING = CODE

WHILE there are still codes to receive DO
 Read CODE
 IF CODE is not in the translation table THEN
 ENTRY = STRING + STRING[0]
 ELSE
 ENTRY = get translation of CODE
 END
 output ENTRY
 add STRING+ENTRY[0] to the translation table
 STRING = ENTRY
END

Easy: use table lookup to convert code to message string
Less easy: build table that’s identical to that in encoder

9/12/11

3

6.02 Fall 2011 Lecture 2, Slide #9

Example: Decode 97, 97, 257, 256, 258

1.  Read 97;
output a; string = a

2.  Read 98; entry = b
output b; add ab to table; string = b

3.  Read 257; entry = bb
output bb; add bb to table; string = bb

4.  Read 256; entry = ab
output ab; add bba to table; string = ab

5.  Read 258; entry = bba
output bba; add abb to table; string = bba
…

256

257

258

259

260

261

262

ab

bb

bba

abb

6.02 Fall 2011 Lecture 2, Slide #10

Lossless vs. Lossy Compression

•  Huffman and LZW encodings are lossless, i.e., we
can reconstruct the original bit stream exactly:
bitsOUT = bitsIN.
–  What we want for “naturally digital” bit streams

(documents, messages, datasets, …)

•  Any use for lossy encodings: bitsOUT ≈ bitsIN?

–  “Essential” information preserved

–  Appropriate for sampled bit streams (audio, video)
intended for human consumption via imperfect sensors
(ears, eyes).

Source
Coding

Source
Decoding

Transmit/Receive
(or Store/Retrieve) bitsIN bitsOUT

6.02 Fall 2011 Lecture 2, Slide #11

Perceptual Coding

•  Start by evaluating input response of bitstream
consumer (eg, human ears or eyes), i.e., how
consumer will perceive the input.
–  Frequency range, amplitude sensitivity, color response, …

–  Masking effects

•  Identify information that can be removed from bit
stream without perceived effect, e.g.,
–  Sounds outside frequency range, or masked sounds

–  Visual detail below resolution limit (color, spatial detail)
–  Info beyond maximum allowed output bit rate

•  Encode remaining information efficiently
–  Use DCT-based transformations (real instead of complex)

–  Quantize DCT coefficients
–  Entropy code (eg, Huffman encoding) results

6.02 Fall 2011 Lecture 2, Slide #13

JPEG Image Compression
JPEG = Joint Photographic Experts Group

RGB to
YCbCr

Conversion

Group into
8x8

blocks of pixels

Convert to
energy at
different

spatial freqs.

Quantizer
Entropy
Encoder

011010…

Performed for each 8x8 block of pixels

Lenna Söderberg, Miss November 1972

