

Example from Last Lecture

choice _i	p_i	$log_2(1/p_i)$	$p_i * log_2(1/p_i)$	Huffman encoding	Expected length
"A"	1/3	1.58 bits	0.528 bits	10	0.667 bits
"В"	1/2	1 bit	0.5 bits	0	0.5 bits
"C"	1/12	3.58 bits	0.299 bits	110	0.25 bits
"D"	1/12	3.58 bits	0.299 bits	111	0.25 bits
			1.626 bits		1.667 bits

Entropy is 1.626 bits/symbol, expected length of Huffman encoding is 1.667 bits/symbol.

16 Pairs: 1.646 bits/sym

64 Triples: 1.637 bits/sym 256 Quads: 1.633 bits/sym

How do we do better?

6.02 Fall 2011

Lecture 2, Slide #2

