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6.02 Fall 2011 
Lecture #3 

• Analog woes, and the motivation for digital abstraction 
• Recipes for sending digital data mapped to analog signals 
• Layered communication model 

•  Messages à packets à bits à signals 
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Sources of Data (i.e., Messages) 

•  Computers – with input from people or from 
programs (“machine-generated” data) 
–  Inherently digital (i.e., bit streams) 

•  Cameras – audio and video 
–  Inherently analog (but made digital on purpose) 

•  Telephones, televisions, broadcast radio, walkie-
talkies, … à Inherently digital? Analog? 

•  Sensors – GPS, accelerometers, MEMS devices, 
climate sensors, … 
–  Inherently either digital or analog 

•  Regardless of the inherent nature of a source, 
converting to digital form is the modern way 

•  Why? 
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Why Digital? 

•  Enables composition of modules to build large 
systems 

•  Enables sophisticated processing of data 

•  But… physical communication links turn out to be 
analog at the lowest level, so we’re going to have go 
between digital and analog and vice versa 

•  A story about picking the right abstractions… 
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Example: Analog TV 
Representing luminance with voltage 

Representation of each point (x, y) on a  
B&W Picture: 
 

 0 volts:  BLACK 
 1  volt:  WHITE 
 0.367879 volts: 36.7879% white  
     (i.e., a shade of gray) 

 
Representation of a picture: 
    Scan points in some prescribed 
    raster order… generate voltage 
    waveform 
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Example: Analog Telephone System 

Pic from wikipedia 

Sound waves à Electric signals à Sound waves 

http://en.wikipedia.org/wiki/Telephone 
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Analog Representation Maps Well to 
Physical Link Capabilities 

Wire: Send signals of different voltages; receiver 
measures voltage 
 
Optical: send signals with different intensities 
(possibly at different wavelengths) 
 
Radio/Acoustic: A bit trickier, but we can send 
at different amplitudes 
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Example Building Blocks:  
Two Simple Components 

•  Copy is the simplest imaginable processing element 
•  INVert is perhaps the next simplest 

v Copy v 

INV v 1-v 
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? 

Let’s build a system! 

Copy Copy 

Copy Copy 

Copy Copy 

Copy Copy 

output 

(In Theory)   (In Reality!)   
input 
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Let’s build a system! 

Copy INV 

Copy INV 

Copy INV 

Copy INV 

output 

input 
  (In Reality!)   
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Analog Woes 

INV 
VOUT = 1 − VIN 

.12345678 Expected: .87654322 
Actual:     .87??????? 

The actual value of VOUT depends on many factors: 
 
•  Manufacturing tolerance of internal components 
•  Environmental factors (temp, power supply voltage) 
•  External influences (EM effects that affect voltages) 
•  How long we’re willing to wait 
•  How much we’re willing to spend 
•  Many distortions, which we can collectively think of  

(for now) as “noise” 
 If we call it ε maybe 

it’ll seem small J Truth in advertising: VOUT = (1 – VIN) ± ε 
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Analog Errors Accumulate (or Cascade) 

•  If, say, ε = 1%, then result might be 100% off (urk!) 
•  Accumulation is good for money, bad for errors 

•  As system builders we want to guarantee output 
without having to worry about exact internal 
details 
–  Bound number of processing stages in series (doesn’t 

work because noise can be unbounded!) 

–  Figure out a way to eliminate (or reduce) errors at each 
processing stage.  So how do we know which part of the 
signal is correct and which is in error? 

 

#1 #2 #3 #99 #100 
… 

(1-VIN)±ε VIN±100ε VIN±2ε 
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Digital Signaling: Map Bits to Signals 
To ensure we can distinguish signal from noise, we’ll map bits 
to signals using a fixed set of discrete values.  For example, in 
a binary mapping (or signaling) scheme we would use two 
voltages (V0 and V1) to represent the two binary values “0” 
and “1”. 
 
•  Voltages near V0 would be interpreted as representing “0” 

 
•  Voltages near V1 would be interpreted as representing “1” 

 
•  If we would like our encoding to work reliably with up to ±N 

volts of noise, then we can space V0 and V1 far enough 
apart so that even noisy signals are interpreted correctly 

V0 

+N -N 

volts 
V1 

+N -N 

“0” “1” 
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Digital Signaling: Receiving 

We can specify the behavior of the receiver with a graph that 
shows how incoming voltages are mapped to “0” and “1”. 
 
One possibility: 

V0 
volts 

V1 

“1” 

“0” 
V1+V0
2

It would be hard to actually build a receiver that precisely 
met this specification since it’s very expensive and time 
consuming to accurately measure voltages (e.g., those near 
the threshold voltage). 

The boundary between “0” 
and “1” regions is called the 
threshold voltage. 
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We Need a “Forbidden Zone” 
We need to change our specification to include a “forbidden 
zone” where there is no mapping between the continuous 
input voltage and the discrete output: 

V0 
volts 

V1 

“1” 

“0” 
V1+V0
2

Now the specification has some “elbow room” which allows for 
manufacturing and environmental differences from receiver to 
receiver. 

Receiver can output any value 
when the input voltage is in 
this range. 
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Signals in 6.02 

•  Each individual transmission signal conceptually a 
fixed-voltage waveform held for some period of time  
–  0 à V0 volts, 1 à V1 volts, held for some time duration 

•  In 6.02, we’ll represent signals, i.e., voltage 
waveforms, using sequences of samples 

•  Sample rate = number of samples/second 
•  Reciprocal is the sample interval (time between 

samples) 

•  4 million samples/second means the sample 
interval is 0.25 * 10-6 seconds = 0.25 microseconds 
= 250 nanoseconds. 
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Signals Sent and Received as Samples 

Continuous time 

Discrete time 
sample interval 

time 

Each transmission of a single bit (“0” or “1”) will 
entail sending some number of consecutive 
voltage samples (V0 or V1 volts); we’ll choose an 
appropriate number of samples_per_bit depending 
on various factors.  Goal: smaller is better! 
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Popping Up: Packaging Messages for 
Transmission and Reception 

Digitize 
(if needed) 

Original source 

Source coding 

Source binary digits 
(“message bits”) 

Bit stream 

COMMUNICATION NETWORK 

Render/display,  
etc. 

Receiving app/user 

Source decoding 

Bit stream 

The rest of 6.02 is about the colored oval 
Simplest network is a single physical comm link 
We’ll start with that, then get to networks with many links 
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Single Link Communication Model 

Digitize 
(if needed) 

Original source 

Source coding 

Source binary digits 
(“message bits”) 

Bit stream 

Render/display,  
etc. 

Receiving app/user 

Source decoding 

Bit stream 

Channel 
Coding 

(bit error  
correction) 

Recv 
samples 

+ 
Demapper 

Mapper 
+ 

Xmit 
samples 

Bits Signals 
(Voltages) 

over 
physical link 

Channel 
Decoding 

(reducing or 
removing  
bit errors) 

End-host 
computers 

Bits 
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Mapper + Transmitting Signal as Samples 

•  Periodic events are timed by a clock signal 
–  Sample period is controlled by the sample clock 

–  Transmit clock is a submultiple of the sample clock 

•  Can receiver do its job if we only send samples and 
not the transmit clock? 
–  Save a wire and the power needed to drive clock signal 

–  Over wireless, may not even be able to send separate clock 

0 1 1 0 1 1 

(Sample interval)(# samples/bit) 

Message bits 

Transmit clock 

Transmit samples 
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Receiving Samples: Data-Clock Recovery 

•  Receiver can infer presence of clock edge every time 
there’s a transition in the received samples. 

•  Using sample period, extrapolate remaining edges 

–  Now know first and last sample for each bit 

•  Choose “middle” sample to determine message bit 

(Sample period)(# samples/bit) 

Receive samples 

Inferred clock edges 

Extrapolated clock edges 
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Data-Clock Recovery Challenge: 
Clock Drift Between Sender and Receiver 

•  No two crystals have identical frequencies 

•  Oscillation frequency depends on temperature, 
hysteresis, mechanical stresses, radiation, supply 
voltage, EM fields, age of crystal, … 

•  Sender’s and receiver’s clocks therefore do not 
“tick” at the same rate; one is faster than the other 

Pics from  
wikipedia 
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Data-Clock Recovery with Clock Drift 

•  Don’t want receiver to extrapolate over too long 
–  Differences in xmit & rcv clock speeds will eventually 

cause receiver to mis-sample the incoming waveform 

•  Recode data stream to ensure frequent transitions  

•  Then, data-clock recovery using a simple “control 
loop”: if halfway (samples_per_bit/2) is same as 
current, reduce sample index by 1, else increment 

•  Formal name for this controller: bang-bang 
because it switches rapidly between two states 

•  More details in tomorrow’s recitation & PSet 2 
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Packets 

•  Bit streams could be long, and many different 
conversations could be sharing links 

•  Packets help share links between different apps; 
they also act as good units of loss recovery (so we 
don’t have to re-send the entire stream) 

•  Bits in a packet are sent synchronously according 
to the clock, but packets themselves are 
asynchronous 

•  So how does receiver at end of a link know when a 
packet starts (and ends)? 

•  Solution: use special SYNC bit sequences to 
periodically synchronize packet start.   These SYNC 
sequences must be distinguishable from bits in the 
packet body. 
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Network Communication Model 
Three Abstraction Layers: Packets, Bits, Signals 

Digitize 
(if needed) 

Original source 

Source coding 

Source binary digits 
(“message bits”) 

Packets 

Render/display,  
etc. 

Receiving app/user 

Source decoding 

Bit stream 

End-host 
computers 

Packetize 

Switch 
Switch Switch 

Switch 

Buffer + stream 

LINK 
LINK LINK 

LINK 

Packets à Bits à Signals à Bits à Packets 

Bit stream 
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Summary 

•  Analog signaling has issues 
–  Real-world channels introduce errors 

–  Errors accumulate at each processing step 

•  Digital Abstraction 
–  Mapping bits to discrete signals allows us to tolerate noise 

better 

–  Recover digital data by comparing against threshold 

–  And later in 6.02: error correcting codes 

•  Physical links: mapping and digital signaling 
–  We don’t send xmit clock, receiver does clock recovery 

–  Determine bit from samples in “middle” of bit cell + 
encoding to ensure frequent transitions 

–  Tune in to recitation tomorrow – useful for PSet 2! 

•  The big picture: three layers – packets, bits, and 
signals 


