
9/14/11

1

6.02 Fall 2011 Lecture 3, Slide #1

6.02 Fall 2011
Lecture #3

• Analog woes, and the motivation for digital abstraction
• Recipes for sending digital data mapped to analog signals
• Layered communication model

•  Messages à packets à bits à signals

6.02 Fall 2011 Lecture 3, Slide #2

Sources of Data (i.e., Messages)

•  Computers – with input from people or from
programs (“machine-generated” data)
–  Inherently digital (i.e., bit streams)

•  Cameras – audio and video
–  Inherently analog (but made digital on purpose)

•  Telephones, televisions, broadcast radio, walkie-
talkies, … à Inherently digital? Analog?

•  Sensors – GPS, accelerometers, MEMS devices,
climate sensors, …
–  Inherently either digital or analog

•  Regardless of the inherent nature of a source,
converting to digital form is the modern way

•  Why?

6.02 Fall 2011 Lecture 3, Slide #3

Why Digital?

•  Enables composition of modules to build large
systems

•  Enables sophisticated processing of data

•  But… physical communication links turn out to be
analog at the lowest level, so we’re going to have go
between digital and analog and vice versa

•  A story about picking the right abstractions…

6.02 Fall 2011 Lecture 3, Slide #4

Example: Analog TV
Representing luminance with voltage

Representation of each point (x, y) on a
B&W Picture:

 0 volts: BLACK
 1 volt: WHITE
 0.367879 volts: 36.7879% white
 (i.e., a shade of gray)

Representation of a picture:
 Scan points in some prescribed
 raster order… generate voltage
 waveform

9/14/11

2

6.02 Fall 2011 Lecture 3, Slide #5

Example: Analog Telephone System

Pic from wikipedia

Sound waves à Electric signals à Sound waves

http://en.wikipedia.org/wiki/Telephone

6.02 Fall 2011 Lecture 3, Slide #6

Analog Representation Maps Well to
Physical Link Capabilities

Wire: Send signals of different voltages; receiver
measures voltage

Optical: send signals with different intensities
(possibly at different wavelengths)

Radio/Acoustic: A bit trickier, but we can send
at different amplitudes

6.02 Fall 2011 Lecture 3, Slide #7

Example Building Blocks:
Two Simple Components

•  Copy is the simplest imaginable processing element
•  INVert is perhaps the next simplest

v Copy v

INV v 1-v

6.02 Fall 2011 Lecture 3, Slide #8

?

Let’s build a system!

Copy Copy

Copy Copy

Copy Copy

Copy Copy

output

(In Theory) (In Reality!)
input

9/14/11

3

6.02 Fall 2011 Lecture 3, Slide #9

Let’s build a system!

Copy INV

Copy INV

Copy INV

Copy INV

output

input
 (In Reality!)

6.02 Fall 2011 Lecture 3, Slide #10

Analog Woes

INV
VOUT = 1 − VIN

.12345678 Expected: .87654322
Actual: .87???????

The actual value of VOUT depends on many factors:

•  Manufacturing tolerance of internal components
•  Environmental factors (temp, power supply voltage)
•  External influences (EM effects that affect voltages)
•  How long we’re willing to wait
•  How much we’re willing to spend
•  Many distortions, which we can collectively think of

(for now) as “noise”
 If we call it ε maybe

it’ll seem small J Truth in advertising: VOUT = (1 – VIN) ± ε

6.02 Fall 2011 Lecture 3, Slide #11

Analog Errors Accumulate (or Cascade)

•  If, say, ε = 1%, then result might be 100% off (urk!)
•  Accumulation is good for money, bad for errors

•  As system builders we want to guarantee output
without having to worry about exact internal
details
–  Bound number of processing stages in series (doesn’t

work because noise can be unbounded!)

–  Figure out a way to eliminate (or reduce) errors at each
processing stage. So how do we know which part of the
signal is correct and which is in error?

#1 #2 #3 #99 #100
…

(1-VIN)±ε VIN±100ε VIN±2ε

6.02 Fall 2011 Lecture 3, Slide #12

Digital Signaling: Map Bits to Signals
To ensure we can distinguish signal from noise, we’ll map bits
to signals using a fixed set of discrete values. For example, in
a binary mapping (or signaling) scheme we would use two
voltages (V0 and V1) to represent the two binary values “0”
and “1”.

•  Voltages near V0 would be interpreted as representing “0”

•  Voltages near V1 would be interpreted as representing “1”

•  If we would like our encoding to work reliably with up to ±N

volts of noise, then we can space V0 and V1 far enough
apart so that even noisy signals are interpreted correctly

V0

+N -N

volts
V1

+N -N

“0” “1”

9/14/11

4

6.02 Fall 2011 Lecture 3, Slide #13

Digital Signaling: Receiving

We can specify the behavior of the receiver with a graph that
shows how incoming voltages are mapped to “0” and “1”.

One possibility:

V0
volts

V1

“1”

“0”
V1+V0
2

It would be hard to actually build a receiver that precisely
met this specification since it’s very expensive and time
consuming to accurately measure voltages (e.g., those near
the threshold voltage).

The boundary between “0”
and “1” regions is called the
threshold voltage.

6.02 Fall 2011 Lecture 3, Slide #14

We Need a “Forbidden Zone”
We need to change our specification to include a “forbidden
zone” where there is no mapping between the continuous
input voltage and the discrete output:

V0
volts

V1

“1”

“0”
V1+V0
2

Now the specification has some “elbow room” which allows for
manufacturing and environmental differences from receiver to
receiver.

Receiver can output any value
when the input voltage is in
this range.

6.02 Fall 2011 Lecture 3, Slide #15

Signals in 6.02

•  Each individual transmission signal conceptually a
fixed-voltage waveform held for some period of time
–  0 à V0 volts, 1 à V1 volts, held for some time duration

•  In 6.02, we’ll represent signals, i.e., voltage
waveforms, using sequences of samples

•  Sample rate = number of samples/second
•  Reciprocal is the sample interval (time between

samples)

•  4 million samples/second means the sample
interval is 0.25 * 10-6 seconds = 0.25 microseconds
= 250 nanoseconds.

6.02 Fall 2011 Lecture 3, Slide #16

Signals Sent and Received as Samples

Continuous time

Discrete time
sample interval

time

Each transmission of a single bit (“0” or “1”) will
entail sending some number of consecutive
voltage samples (V0 or V1 volts); we’ll choose an
appropriate number of samples_per_bit depending
on various factors. Goal: smaller is better!

9/14/11

5

6.02 Fall 2011 Lecture 3, Slide #17

Popping Up: Packaging Messages for
Transmission and Reception

Digitize
(if needed)

Original source

Source coding

Source binary digits
(“message bits”)

Bit stream

COMMUNICATION NETWORK

Render/display,
etc.

Receiving app/user

Source decoding

Bit stream

The rest of 6.02 is about the colored oval
Simplest network is a single physical comm link
We’ll start with that, then get to networks with many links

6.02 Fall 2011 Lecture 3, Slide #18

Single Link Communication Model

Digitize
(if needed)

Original source

Source coding

Source binary digits
(“message bits”)

Bit stream

Render/display,
etc.

Receiving app/user

Source decoding

Bit stream

Channel
Coding

(bit error
correction)

Recv
samples

+
Demapper

Mapper
+

Xmit
samples

Bits Signals
(Voltages)

over
physical link

Channel
Decoding

(reducing or
removing
bit errors)

End-host
computers

Bits

6.02 Fall 2011 Lecture 3, Slide #19

Mapper + Transmitting Signal as Samples

•  Periodic events are timed by a clock signal
–  Sample period is controlled by the sample clock

–  Transmit clock is a submultiple of the sample clock

•  Can receiver do its job if we only send samples and
not the transmit clock?
–  Save a wire and the power needed to drive clock signal

–  Over wireless, may not even be able to send separate clock

0 1 1 0 1 1

(Sample interval)(# samples/bit)

Message bits

Transmit clock

Transmit samples

6.02 Fall 2011 Lecture 3, Slide #20

Receiving Samples: Data-Clock Recovery

•  Receiver can infer presence of clock edge every time
there’s a transition in the received samples.

•  Using sample period, extrapolate remaining edges

–  Now know first and last sample for each bit

•  Choose “middle” sample to determine message bit

(Sample period)(# samples/bit)

Receive samples

Inferred clock edges

Extrapolated clock edges

9/14/11

6

6.02 Fall 2011 Lecture 3, Slide #21

Data-Clock Recovery Challenge:
Clock Drift Between Sender and Receiver

•  No two crystals have identical frequencies

•  Oscillation frequency depends on temperature,
hysteresis, mechanical stresses, radiation, supply
voltage, EM fields, age of crystal, …

•  Sender’s and receiver’s clocks therefore do not
“tick” at the same rate; one is faster than the other

Pics from
wikipedia

6.02 Fall 2011 Lecture 3, Slide #22

Data-Clock Recovery with Clock Drift

•  Don’t want receiver to extrapolate over too long
–  Differences in xmit & rcv clock speeds will eventually

cause receiver to mis-sample the incoming waveform

•  Recode data stream to ensure frequent transitions

•  Then, data-clock recovery using a simple “control
loop”: if halfway (samples_per_bit/2) is same as
current, reduce sample index by 1, else increment

•  Formal name for this controller: bang-bang
because it switches rapidly between two states

•  More details in tomorrow’s recitation & PSet 2

6.02 Fall 2011 Lecture 3, Slide #23

Packets

•  Bit streams could be long, and many different
conversations could be sharing links

•  Packets help share links between different apps;
they also act as good units of loss recovery (so we
don’t have to re-send the entire stream)

•  Bits in a packet are sent synchronously according
to the clock, but packets themselves are
asynchronous

•  So how does receiver at end of a link know when a
packet starts (and ends)?

•  Solution: use special SYNC bit sequences to
periodically synchronize packet start. These SYNC
sequences must be distinguishable from bits in the
packet body.

6.02 Fall 2011 Lecture 3, Slide #24

Network Communication Model
Three Abstraction Layers: Packets, Bits, Signals

Digitize
(if needed)

Original source

Source coding

Source binary digits
(“message bits”)

Packets

Render/display,
etc.

Receiving app/user

Source decoding

Bit stream

End-host
computers

Packetize

Switch
Switch Switch

Switch

Buffer + stream

LINK
LINK LINK

LINK

Packets à Bits à Signals à Bits à Packets

Bit stream

9/14/11

7

6.02 Fall 2011 Lecture 3, Slide #25

Summary

•  Analog signaling has issues
–  Real-world channels introduce errors

–  Errors accumulate at each processing step

•  Digital Abstraction
–  Mapping bits to discrete signals allows us to tolerate noise

better

–  Recover digital data by comparing against threshold

–  And later in 6.02: error correcting codes

•  Physical links: mapping and digital signaling
–  We don’t send xmit clock, receiver does clock recovery

–  Determine bit from samples in “middle” of bit cell +
encoding to ensure frequent transitions

–  Tune in to recitation tomorrow – useful for PSet 2!

•  The big picture: three layers – packets, bits, and
signals

