DIGITAL

COMMUNICATION

SYSTEMS

6.02 Fall 2011
Lecture #3

» Analog woes, and the motivation for digital abstraction
* Recipes for sending digital data mapped to analog signals
» Layered communication model

* Messages > packets - bits - signals

Sources of Data (i.e., Messages)

+ Computers — with input from people or from
programs (“machine-generated” data)
— Inherently digital (i.e., bit streams)

* Cameras — audio and video
— Inherently analog (but made digital on purpose)

+ Telephones, televisions, broadcast radio, walkie-
talkies, ... 2 Inherently digital? Analog?

* Sensors — GPS, accelerometers, MEMS devices,
climate sensors, ...
— Inherently either digital or analog

* Regardless of the inherent nature of a source,
converting to digital form is the modern way

* Why?

Why Digital?

* Enables composition of modules to build large
systems

* Enables sophisticated processing of data

* But... physical communication links turn out to be
analog at the lowest level, so we’re going to have go
between digital and analog and vice versa

* A story about picking the right abstractions...

Example: Analog TV
Representing luminance with voltage

Representation of each point (x, y) on a
B&W Picture:

0 volts: BLACK

1 volt: WHITE

0.367879 volts: 36.7879% white
(i.e., a shade of gray)

Representation of a picture:
Scan points in some prescribed
raster order... generate voltage
waveform

9/14/11

Example: Analog Telephone System

Pic from wikipedia

Sound waves > Electric signals - Sound waves

http://en.wikipedia.org/wiki/Telephone

Analog Representation Maps Well to
Physical Link Capabilities

Wire: Send signals of different voltages; receiver w
measures voltage

Optical: send signals with different intensities
(possibly at different wavelengths)

Radio/Acoustic: A bit trickier, but we can send
at different amplitudes

Example Building Blocks:
Two Simple Components

* Copy is the simplest imaginable processing element
* INVert is perhaps the next simplest

Let’ s build a system!

| [Copy}—{ Copy |
—Gony—{comy
" Gony—{Cony}— |

(In Reality!)

9/14/11

Let’ s build a system!

W —
e
— Con— W
L [Copy|——] —

(In Reality!)

Analog Woes

12345678 —| INV |, Expected: .87654322
Vour =1 - Vi Actual: .87???????

The actual value of V,y depends on many factors:

* Manufacturing tolerance of internal components

* Environmental factors (temp, power supply voltage)
* External influences (EM effects that affect voltages)
* How long we’re willing to wait

* How much we’re willing to spend

* Many distortions, which we can collectively think of

(for now) as “noise”
4/ If we call it € maybe
Truth in advertising: Vour = (1 - V) £ € it'll seem small ©

Analog Errors Accumulate (or Cascade)

(1-Viy)te Vint2€ Vint100g

e e’

+ If, say, € = 1%, then result might be 100% off (urk!)
* Accumulation is good for money, bad for errors

* As system builders we want to guarantee output
without having to worry about exact internal
details

— Bound number of processing stages in series (doesn’t
work because noise can be unbounded!)
— Figure out a way to eliminate (or reduce) errors at each

processing stage. So how do we know which part of the
signal is correct and which is in error?

Digital Signaling: Map Bits to Signals

To ensure we can distinguish signal from noise, we’ll map bits
to signals using a fixed set of discrete values. For example, in
a binary mapping (or signaling) scheme we would use two
voltages (VO and V1) to represent the two binary values “0”
and “1”.

» Voltages near VO would be interpreted as representing “0”
» Voltages near V1 would be interpreted as representing “1”
 If we would like our encoding to work reliably with up to *N

volts of noise, then we can space VO and V1 far enough
apart so that even noisy signals are interpreted correctly

<N]l*N> <N]L,f_N_,,,,>
i volts
VO V1
“«g” “yn

9/14/11

Digital Signaling: Receiving

We can specify the behavior of the receiver with a graph that
shows how incoming voltages are mapped to “0” and “1”.

The boundary between “0”
and “1” regions is called the
threshold voltage.

One possibility:

«qn
1

“0” T @ T volts
\Y0] V1+VO0 V1
2

It would be hard to actually build a receiver that precisely
met this specification since it’s very expensive and time
consuming to accurately measure voltages (e.g., those near
the threshold voltage).

We Need a “Forbidden Zone”

We need to change our specification to include a “forbidden
zone” where there is no mapping between the continuous
input voltage and the discrete output:

Receiver can output any value
when the input voltage is in
. this range.
17 1

—t—si

VO LVI+VO Vi1

2
Now the specification has some “elbow room” which allows for
manufacturing and environmental differences from receiver to
receiver.

Signals in 6.02

Each individual transmission signal conceptually a
fixed-voltage waveform held for some period of time
— 0 2> VO volts, 1 > V1 volts, held for some time duration

In 6.02, we'll represent signals, i.e., voltage
waveforms, using sequences of samples

Sample rate = number of samples/second
Reciprocal is the sample interval (time between
samples)

4 million samples/second means the sample
interval is 0.25 * 106 seconds = 0.25 microseconds
= 250 nanoseconds.

Signals Sent and Received as Samples

Each transmission of a single bit (“0” or “17) will
entail sending some number of consecutive
voltage samples (VO or V1 volts); we’ll choose an
appropriate number of samples_per_bit depending
on various factors. Goal: smaller is better!

Continuous time

Discrete time -3 £

e et sample interval
—— > time

9/14/11

Popping Up: Packaging Messages for
Transmission and Reception

Original source

‘ Receiving app/user ‘

Digitize Render/display,
(if needed) etc.

Source binary digits
(“message bits”)

Source coding

Bit stream

Source decoding

Bit stream

COMMUNICATION NETWORK

The rest of 6.02 is about the colored oval
Simplest network is a single physical comm link
We'll start with that, then get to networks with many links

Single Link Communication Model

Y e T T N End-host P R

computers | ‘ Receiving app/user ‘ \

Digitize
(if needed)

Source binary digit:
(“message bits”)

| | Source coding | ‘ Source decoding
N Bit stream \ Bit stream_

Render/display,
@i,

| Channel Mapper Recv ST
| Coding |Bits| + Sigpgs | samples Bitg g
‘ =2 L il (reducing or
(bit error Xmit |(Vtages) + e
correction) samples | over Demapper bit errorsg)

- physical link

Mapper + Transmitting Signal as Samples

Messagebits [0 [1 [1 [o[1] 1]

Transmit clock | | I t I t

Transmit samples

. T .
(Sample interval)(# samples/bit)

* Periodic events are timed by a clock signal
— Sample period is controlled by the sample clock
— Transmit clock is a submultiple of the sample clock
* Can receiver do its job if we only send samples and
not the transmit clock?
— Save a wire and the power needed to drive clock signal
— Over wireless, may not even be able to send separate clock

Receive samples

Inferred clock edges t t t

Extrapolated clock edges t t t

= .
(Sample period)(# samples/bit)
* Receiver can infer presence of clock edge every time
there’s a transition in the received samples.

+ Using sample period, extrapolate remaining edges
— Now know first and last sample for each bit

+ Choose “middle” sample to determine message bit

9/14/11

Data-Clock Recovery Challenge:
Clock Drift Between Sender and Receiver

» No two crystals have identical frequencies

Pics from
wikipedia

* Oscillation frequency depends on temperature,
hysteresis, mechanical stresses, radiation, supply
voltage, EM fields, age of crystal, ...

* Sender’s and receiver’s clocks therefore do not
“tick” at the same rate; one is faster than the other

Packets

* Bit streams could be long, and many different
conversations could be sharing links

* Packets help share links between different apps;
they also act as good units of loss recovery (so we
don’t have to re-send the entire stream)

» Bits in a packet are sent synchronously according
to the clock, but packets themselves are
asynchronous

* So how does receiver at end of a link know when a
packet starts (and ends)?

* Solution: use special SYNC bit sequences to
periodically synchronize packet start. These SYNC
sequences must be distinguishable from bits in the
packet body.

Data-Clock Recovery with Clock Drift

Half-way sample Half-way sample
Current sample Current sample

Previous sample sin)e » . Previous sample L L

Samples/bit Samples/bit

+ Don’t want receiver to extrapolate over too long

— Differences in xmit & rcv clock speeds will eventually
cause receiver to mis-sample the incoming waveform

* Recode data stream to ensure frequent transitions

* Then, data-clock recovery using a simple “control
loop”: if halfway (samples_per_bit/2) is same as
current, reduce sample index by 1, else increment

* Formal name for this controller: bang-bang
because it switches rapidly between two states

* More details in tomorrow’s recitation & PSet 2

Network Communication Model
Three Abstraction Layers: Packets, Bits, Signals

/ —\ End-host
(| /' computers ‘ Receiving app/user ‘
Digitize Render/display,
(if needed) etc.

Source binary digit: r
(“message bits”)

Source coding Source decoding
\77 Bit stream / \\ Bit stream

K
QR S = [EHS = SIS = 5S =2 dee

9/14/11

9/14/11

Summary

Analog signaling has issues

— Real-world channels introduce errors

— Errors accumulate at each processing step
Digital Abstraction

— Mapping bits to discrete signals allows us to tolerate noise
better

— Recover digital data by comparing against threshold
— And later in 6.02: error correcting codes

Physical links: mapping and digital signaling

— We don’t send xmit clock, receiver does clock recovery

— Determine bit from samples in “middle” of bit cell +
encoding to ensure frequent transitions

— Tune in to recitation tomorrow — useful for PSet 2!
The big picture: three layers — packets, bits, and
signals

