
9/26/11

1

6.02 Fall 2011 Lecture 5, Slide #1

6.02 Fall 2011
Lecture #5: Error Correction Codes – 1

•  Channel coding: applying redundancy to correct errors
•  Embeddings and Hamming distance: structural separation
•  Parity equations & linear functions
•  Linear (n,k) block codes & rectangular parity code

6.02 Fall 2011 Lecture 5, Slide #2

Channel Coding
Our plan to deal with bit errors:

Channel coding is about error correction (and error detection).

We will design codes to correct commonly occurring errors, e.g.,
error bursts of bounded length.

We will also design codes to reduce the effective bit error rate,
i.e., the probability of a decoding error.

Mapper +
Sample Xmit

Recv Samples
+ Demapper

Channel
Encoder

Channel
Decoder

Message
bitstream

Coded bitstream with
redundant information
used to correct or detect
errors

Coded bitstream,
possibly with
errors

Recovered message
bitstream

C
h

a
n

n
el

6.02 Fall 2011 Lecture 5, Slide #3

Error Model: Binary Symmetric Channel
Suppose we wanted to reliably transmit the result of a single coin
flip:

Suppose that during transmission a “0” is turned into a
“1” or a “1” is turned into a “0” with probability pe.
This is a binary symmetric channel (BSC).

0

1 with prob pe

“heads” “tails”

Heads: “0” Tails: “1”

This is a prototype of the
“bit” coin for the new
information economy. Value
= 12.5¢

6.02 Fall 2011 Lecture 5, Slide #4

Key Idea: Redundancy
If bit errors are independent, then probability of multiple
bits all being wrong reduces rapidly.

P(k bits all wrong) = pk

If I replicate each bit twice can I improve error correction?
Can I detect errors if they occur?

If I send the same bit three times, what is the probability of
a bit error in the decoding?

Decoding rule: majority vote!

Generalize to sending c copies of each bit
à The simplest error correction code, the replication code

Message bit b à Codeword bbb…b (c times)
Decoder: Count #0’s and #1’s, pick majority

9/26/11

2

6.02 Fall 2011 Lecture 5, Slide #5

Performance of Replication Code

Replication factor (c)

Prob(decoding error) over BSC w/ p=0.01

Code: Bit b coded as bb…b (c times)
Exponential fall-off (note log scale)
But huge overhead (low code rate)

We can do a lot better!

6.02 Fall 2011 Lecture 5, Slide #6

Hamming Distance

The number of bit positions
in which the corresponding
bits of two encodings of the
same length are different

The Hamming Distance (HD) between a valid binary code word
and the same code word with e errors is e.

The problem with no coding is that the two valid code words (“0”
and “1”) also have a Hamming distance of 1. So a single-bit error
changes a valid code word into another valid code word…

What is the Hamming Distance of the replication code?

1 0 “heads” “tails”

single-bit error

I wish he’d
increase his
hamming distance

6.02 Fall 2011 Lecture 5, Slide #7

Embedding for Structural Separation
Encode so that the codewords are “far enough” from
each other
Likely error patterns shouldn’t transform one codeword
to another

11 00 “heads” “tails”

01

10

single-bit error

If D is the minimum
Hamming distance
between codewords, we
can detect all patterns of
<= (D-1) bit errors

If D is the minimum
Hamming distance
between codewords, we
can correct all patterns of

 or fewer bit errors !"

!
#$

%

2
1D

110

000 “heads”

“tails”

100

010

111

001

101

011

Decode received
codeword r to
nearest valid
codeword

Use triangle ineq.
property of HD to
show single error
correction (SEC)

6.02 Fall 2011 Lecture 5, Slide #9

Gaining Some Insight: Parity Calculations

We can add single-bit error detection to any length
code word by adding a parity bit chosen to guarantee
the Hamming distance between any two valid code
words is at least 2.

Parity: addition in GF(2): 0+0=0, 1+0=0+1=1, 1+1=0

 multiplication: 0*0=0*1=1*0 =0, 1*1=1

GF(2) arithmetic: Can count by summing the bits in
the word modulo 2 (equivalent to XOR’ing the bits
together).

9/26/11

3

6.02 Fall 2011 Lecture 5, Slide #10

A Simple Code: Parity Check

•  Add a parity bit to message of length k to make the
total number of “1” bits even (aka “even parity”).

•  If the number of “1”s in the received word is odd,
there there has been an error.

0 1 1 0 0 1 0 1 0 0 1 1 → original word with parity bit
0 1 1 0 0 0 0 1 0 0 1 1 → single-bit error (detected) bit
0 1 1 0 0 0 1 1 0 0 1 1 → 2-bit error (not detected) bit

•  Hamming distance of parity check code is 2
–  Can detect all single-bit errors

–  In fact, can detect all odd number of errors
–  But cannot detect even number of errors

–  And cannot correct any errors

6.02 Fall 2011 Lecture 5, Slide #11

Linear Block Codes

Can we extend the parity check idea and add more
parity bits by combining different message bits?

Block code: k message bits encoded to n code bits
I.e., each of 2k messages encoded into a unique n-bit
combination via a linear transformation.
Set of parity equations (in GF(2)) represents code.

Key property: Sum of any two codewords is also a
codeword à necessary and sufficient for code to be
linear.

(n,k) code has rate k/n.
Sometime written as (n,k,d), where d is the Hamming
Distance of the code.

6.02 Fall 2011 Lecture 5, Slide #12

Examples: What are n, k, d here?

{111, 000}

{0000, 1100, 0011, 1111}

{00000}

{1111, 0000, 0001}

{1111, 0000, 0010, 1100}

Not linear
codes! The HD of a

linear code is
the number of
“1”s in the non-
zero codeword
with the
smallest # of
“1”s

(3,1,3). Rate= 1/3.

(4,2,2). Rate = ½.

{5,0,_). Rate = 0!

(7,4,3) code. Rate = 4/7.
6.02 Fall 2011 Lecture 5, Slide #13

(n,k) Systematic Linear Block Codes

•  Split data into k-bit blocks
•  Add (n-k) parity bits to each block using (n-k) linear

equations, making each block n bits long

•  Every linear code can be represented in systematic
form

Message bits Parity bits

k

n
The entire block is the
called the “code word
in systematic form”

n-k

9/26/11

4

6.02 Fall 2011 Lecture 5, Slide #14

Example: Rectangular Parity Codes

D1 D2

D3 D4

P3 P4

P1

P2

P1 is parity bit
for row #1

P4 is parity bit
for column #2

Idea: start with rectangular
array of data bits, add parity
checks for each row and
column. Single-bit error in
data will show up as parity
errors in a particular row
and column, pinpointing the
bit that has the error.

0 1 1
1 1 0
1 0

0 1 1
1 0 0
1 0

Parity for each row
and column is
correct ⇒ no errors

Parity check fails for
row #2 and column #2
⇒ bit D4 is incorrect

0 1 1
1 1 1
1 0

Parity check only fails
for row #2
⇒ bit P2 is incorrect

(n,k,d)=?

6.02 Fall 2011 Lecture 5, Slide #15

Rectangular Code Corrects Single Errors

Claim: The HD of the rectangular code with r rows
and c columns is 3. Hence, it is a single error
correction (SEC) code.

Code rate = rc / (rc + r + c).
D1 D2

D5 D6

P3

P5

P1

P2

D3 D4

D7 D8

D9 D10 D11 D12

P4 P7 P6
Proof: Three cases.
(1) Msgs with HD 1 à differ in 1 row and 1 col parity
(2) Msgs with HD 2 à differ in either row OR col or
both à HD >= 4 here.
(3) Msgs with HD 3 or more à systematic code so
differ in that many bits

If we add an overall parity bit P,
we get a (rc+r+c+1, rc, 4) code

Improves error detection but not
correction capability P

6.02 Fall 2011 Lecture 5, Slide #16

Decoding Rectangular Parity Codes

Receiver gets possibly corrupted word, w.

Calculates all the parity bits from the data bits.

If no parity errors, return rc bits of data.

Single row or column parity bit error à rc data
bits are fine, return them

If parity of row x and parity of column y are in
error, then the data bit in the (x,y) position is
wrong; flip it and return the rc data bits

All other parity errors are uncorrectable. Return
the data as-is, flag an “uncorrectable error”

6.02 Fall 2011 Lecture 5, Slide #17

What Next?

Linear block codes are widely used and are
powerful à we’ve just seen the tip of the iceberg

Rectangular code is a good example, but

 #parity bits grows at least as sqrt(k) where k is
 #message bits
 Can we do better? What’s the best we can do?

And can we decode linear block codes more
systematically?

Next lecture: Bounds on the best possible code for
a given error correction goal, Hamming codes,
syndrome decoding of linear block codes, and
interleaving for burst errors

