

Channel Coding

Our plan to deal with bit errors:

Channel coding is about error correction (and error detection).
We will design codes to correct commonly occurring errors, e.g., error bursts of bounded length.

We will also design codes to reduce the effective bit error rate, i.e., the probability of a decoding error.

Key Idea: Redundancy

If bit errors are independent, then probability of multiple bits all being wrong reduces rapidly
$\mathrm{P}(k$ bits all wrong $)=p^{k}$
If I replicate each bit twice can I improve error correction? Can I detect errors if they occur?

If I send the same bit three times, what is the probability of
1 " or a " 1 " is durned transmission a 0 is turned into This is a binary symmetric channel (BSC)

a bit error in the decoding?
Deoding ruve maisity volel
Decoding rule: majority vote!
Generalize to sending c copies of each bit
\rightarrow The simplest error correction code, the replication code
Message bit $b \rightarrow$ Codeword bbb...b (c times) Decoder: Count \#0's and \#1's, pick majority
Performance of Replication Code

Gaining Some Insight: Parity Calculations

We can add single-bit error detection to any length code word by adding a parity bit chosen to guarantee the Hamming distance between any two valid code words is at least 2.

Parity: addition in GF(2): $0+0=0,1+0=0+1=1,1+1=0$ multiplication: $0 * 0=0 * 1=1 * 0=0,1 * 1=1$

GF(2) arithmetic: Can count by summing the bits in the word modulo 2 (equivalent to XOR'ing the bits together).

A Simple Code: Parity Check

- Add a parity bit to message of length k to make the total number of " 1 " bits even (aka "even parity").
- If the number of " 1 "s in the received word is odd, there there has been an error.

$$
\begin{array}{llllllllllllllll}
\\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array} \rightarrow \text { single-bit error (detected) bi }
$$

- Hamming distance of parity check code is 2
- Can detect all single-bit errors
- In fact, can detect all odd number of errors
- But cannot detect even number of errors
- And cannot correct any errors

Linear Block Codes

Can we extend the parity check idea and add more parity bits by combining different message bits?

Block code: k message bits encoded to n code bits I.e., each of 2^{k} messages encoded into a unique n-bit combination via a linear transformation.
Set of parity equations (in $\mathrm{GF}(2)$) represents code.
Key property: Sum of any two codewords is also a codeword \rightarrow necessary and sufficient for code to be linear.
(n, k) code has rate k / n.
Sometime written as ($\mathrm{n}, \mathrm{k}, \mathrm{d}$), where d is the Hamming Distance of the code.

(n, k) Systematic Linear Block Codes

- Split data into k-bit blocks
- Add ($n-k$) parity bits to each block using ($n-k$) linear equations, making each block n bits long

- Every linear code can be represented in systematic form

Example: Rectangular Parity Codes

Idea: start with rectangular array of data bits, add parity checks for each row and column. Single-bit error in data will show up as parity errors in a particular row and column, pinpointing the bit that has the error

011	011	011
110	100	111
10	10	10

Decoding Rectangular Parity Codes

Receiver gets possibly corrupted word, w.
Calculates all the parity bits from the data bits.
If no parity errors, return $r c$ bits of data.
Single row or column parity bit error $\rightarrow r c$ data bits are fine, return them

If parity of row x and parity of column y are in error, then the data bit in the (x, y) position is wrong; flip it and return the rc data bits
All other parity errors are uncorrectable. Return
the data as-is, flag an "uncorrectable error"

Rectangular Code Corrects Single Errors

Claim: The HD of the rectangular code with r rows and c columns is 3 . Hence, it is a single error correction (SEC) code.

Code rate $=r c /(r c+r+c)$.
If we add an overall parity bit P,
we get a ($r c+r+c+1, r c, 4$) code
Improves error detection but not correction capability
Proof: Three cases.

D_{1}	D_{2}	D_{3}	D_{4}	P_{1}
D_{5}	D_{6}	D_{7}	D_{8}	P_{2}
D_{9}	D_{10}	D_{11}	D_{12}	P_{3}
P_{4}	P_{5}	P_{6}	P_{7}	P

(1) Msgs with HD $1 \rightarrow$ differ in 1 row and 1 col parity
(2) Msgs with HD $2 \rightarrow$ differ in either row OR col or
both \rightarrow HD >= 4 here.
(3) Msgs with HD 3 or more \rightarrow systematic code so differ in that many bits

What Next?

Linear block codes are widely used and are powerful \rightarrow we've just seen the tip of the iceberg

Rectangular code is a good example, but \#parity bits grows at least as $\operatorname{sqrt}(k)$ where k is \#message bits
Can we do better? What's the best we can do?
And can we decode linear block codes more systematically?

Next lecture: Bounds on the best possible code for a given error correction goal, Hamming codes, syndrome decoding of linear block codes, and interleaving for burst errors

