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6.02 Fall 2011 
Lecture #5: Error Correction Codes – 1 

•  Channel coding: applying redundancy to correct errors 
•  Embeddings and Hamming distance: structural separation 
•  Parity equations & linear functions 
•  Linear (n,k) block codes & rectangular parity code 
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Channel Coding 
Our plan to deal with bit errors: 

Channel coding is about error correction (and error detection). 
 
We will design codes to correct commonly occurring errors, e.g., 
error bursts of bounded length. 
 
We will also design codes to reduce the effective bit error rate, 
i.e., the probability of a decoding error. 
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Error Model: Binary Symmetric Channel 
Suppose we wanted to reliably transmit the result of a single coin 
flip: 

Suppose that during transmission a “0” is turned into a 
“1” or a “1” is turned into a “0” with probability pe. 
This is a binary symmetric channel (BSC). 

0 

1 with prob pe 

“heads” “tails” 

Heads: “0” Tails: “1” 

This is a prototype of the 
“bit” coin for the new 
information economy.  Value 
= 12.5¢ 
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Key Idea: Redundancy 
If bit errors are independent, then probability of multiple 
bits all being wrong reduces rapidly. 
 
P(k bits all wrong) = pk 

 
If I replicate each bit twice can I improve error correction? 
Can I detect errors if they occur? 
 
If I send the same bit three times, what is the probability of 
a bit error in the decoding? 
 
Decoding rule: majority vote! 
 
Generalize to sending c copies of each bit 
à The simplest error correction code, the replication code 
 
Message bit b à Codeword bbb…b (c times) 
Decoder: Count #0’s and #1’s, pick majority 
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Performance of Replication Code 

Replication factor (c) 

Prob(decoding error) over BSC w/ p=0.01 

Code: Bit b coded as bb…b (c times) 
Exponential fall-off (note log scale) 
But huge overhead (low code rate) 

We can do a lot better! 
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Hamming Distance 

The number of bit positions 
in which the corresponding 
bits of two encodings of the 
same length are different 

The Hamming Distance (HD) between a valid binary code word 
and the same code word with e errors is e. 
 
The problem with no coding is that the two valid code words (“0” 
and “1”) also have a Hamming distance of 1.  So a single-bit error 
changes a valid code word into another valid code word… 
 
 
 
 
 
What is the Hamming Distance of the replication code? 

1 0 “heads” “tails” 

single-bit error 

I wish he’d 
increase his 
hamming distance 
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Embedding for Structural Separation 
Encode so that the codewords are “far enough” from 
each other 
Likely error patterns shouldn’t transform one codeword 
to another 

11 00 “heads” “tails” 

01 

10 

single-bit error 

If D is the minimum 
Hamming distance 
between codewords, we 
can detect all patterns of 
<= (D-1) bit errors  

If D is the minimum 
Hamming distance 
between codewords, we 
can correct all patterns of 
  
        or fewer bit errors  !"
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Decode received 
codeword r to 
nearest valid  
codeword 

Use triangle ineq.  
property of HD to 
show single error 
correction (SEC) 
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Gaining Some Insight: Parity Calculations 

We can add single-bit error detection to any length 
code word by adding a parity bit chosen to guarantee 
the Hamming distance between any two valid code 
words is at least 2.  
 
Parity: addition in GF(2): 0+0=0, 1+0=0+1=1, 1+1=0 

   multiplication: 0*0=0*1=1*0 =0, 1*1=1 
 

GF(2) arithmetic: Can count by summing the bits in 
the word modulo 2 (equivalent to XOR’ing the bits 
together). 
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A Simple Code: Parity Check 

•  Add a parity bit to message of length k to make the 
total number of “1” bits even (aka “even parity”). 

•  If the number of “1”s in the received word is odd, 
there there has been an error. 
 
0 1 1 0 0 1 0 1 0 0 1 1 → original word with parity bit 
0 1 1 0 0 0 0 1 0 0 1 1 → single-bit error (detected) bit 
0 1 1 0 0 0 1 1 0 0 1 1 → 2-bit error (not detected) bit 
 

•  Hamming distance of parity check code is 2 
–  Can detect all single-bit errors 

–  In fact, can detect all odd number of errors 
–  But cannot detect even number of errors 

–  And cannot correct any errors 
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Linear Block Codes 

Can we extend the parity check idea and add more 
parity bits by combining different message bits? 
 
Block code: k message bits encoded to n code bits 
I.e., each of 2k messages encoded into a unique n-bit 
combination via a linear transformation. 
Set of parity equations (in GF(2)) represents code. 
 
Key property: Sum of any two codewords is also a 
codeword à necessary and sufficient for code to be 
linear. 
 
(n,k) code has rate k/n. 
Sometime written as (n,k,d), where d is the Hamming 
Distance of the code. 
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Examples: What are n, k, d here? 

{111, 000} 
 
{0000, 1100, 0011, 1111} 
 
{00000} 

{1111, 0000, 0001} 

{1111, 0000, 0010, 1100} 

Not linear 
codes! The HD of a 

linear code is 
the number of 
“1”s in the non-
zero codeword 
with the 
smallest # of 
“1”s 

(3,1,3). Rate= 1/3. 
 
(4,2,2). Rate = ½. 
 
{5,0,_). Rate = 0! 

(7,4,3) code. Rate = 4/7. 
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(n,k) Systematic Linear Block Codes 

•  Split data into k-bit blocks 
•  Add (n-k) parity bits to each block using (n-k) linear 

equations, making each block n bits long 

•  Every linear code can be represented in systematic 
form 

Message bits Parity bits 

k 

n 
The entire block is the 
called the “code word 
in systematic form” 

n-k 
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Example: Rectangular Parity Codes 

D1 D2 

D3 D4 

P3 P4 

P1 

P2 

P1 is parity bit 
for row #1 

P4 is parity bit 
for column #2 

Idea: start with rectangular 
array of data bits, add parity 
checks for each row and 
column.  Single-bit error in 
data will show up as parity 
errors in a particular row 
and column, pinpointing the 
bit that has the error. 

0 1 1 
1 1 0 
1 0 

0 1 1 
1 0 0 
1 0 

Parity for each row 
and column is 
correct ⇒ no errors 

Parity check fails for 
row #2 and column #2 
⇒ bit D4 is incorrect 

0 1 1 
1 1 1 
1 0 

Parity check only fails 
for row #2  
⇒ bit P2 is incorrect 

(n,k,d)=? 
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Rectangular Code Corrects Single Errors 

Claim: The HD of the rectangular code with r rows 
and c columns is 3.  Hence, it is a single error 
correction (SEC) code. 

Code rate = rc / (rc + r + c). 
D1 D2 

D5 D6 

P3 

P5 

P1 

P2 

D3 D4 

D7 D8 

D9 D10 D11 D12 

P4 P7 P6 
Proof: Three cases. 
(1) Msgs with HD 1 à differ in 1 row and 1 col parity 
(2) Msgs with HD 2 à differ in either row OR col or 
both à HD >= 4 here. 
(3) Msgs with HD 3 or more à systematic code so 
differ in that many bits 

If we add an overall parity bit P, 
we get a (rc+r+c+1, rc, 4) code 
 
Improves error detection but not 
correction capability P 
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Decoding Rectangular Parity Codes 

Receiver gets possibly corrupted word, w. 

Calculates all the parity bits from the data bits. 

If no parity errors, return rc bits of data. 

Single row or column parity bit error à rc data 
bits are fine, return them 

If parity of row x and parity of column y are in 
error, then the data bit in the (x,y) position is 
wrong; flip it and return the rc data bits 

All other parity errors are uncorrectable.  Return 
the data as-is, flag an “uncorrectable error” 
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What Next? 

Linear block codes are widely used and are 
powerful à we’ve just seen the tip of the iceberg 
 
Rectangular code is a good example, but 

 #parity bits grows at least as sqrt(k) where k is 
 #message bits 
 Can we do better?  What’s the best we can do? 

 
And can we decode linear block codes more 
systematically? 
 
Next lecture: Bounds on the best possible code for 
a given error correction goal, Hamming codes, 
syndrome decoding of linear block codes, and 
interleaving for burst errors 


