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6.02 Fall 2011 
Lecture #6: Channel Coding – 2 

•  Linear (n,k) block codes 
•  Rectangular parity codes 
•  Hamming codes 

•  Combating burst errors: interleaving 
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(n,k) Systematic Linear Block Codes 

•  Split data into k-bit blocks 
•  Add (n-k) parity bits to each block using (n-k) linear 

equations, making each block n bits long 

•  Every linear code can be represented in systematic 
form 

Message bits Parity bits 

k 

n 
The entire block is 
called the “code word 
in systematic form” 

n-k 
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Example: Rectangular Parity Codes 

D1 D2 

D3 D4 

P3 P4 

P1 

P2 

P1 is parity bit 
for row #1 

P4 is parity bit 
for column #2 

Idea: start with rectangular 
array of data bits, add parity 
checks for each row and 
column.  Single-bit error in 
data will show up as parity 
errors in a particular row 
and column, pinpointing the 
bit that has the error. 

0 1 1 
1 1 0 
1 0 

0 1 1 
1 0 0 
1 0 

Parity for each row 
and column is 
correct ⇒ no errors 

Parity check fails for 
row #2 and column #2 
⇒ bit D4 is incorrect 

0 1 1 
1 1 1 
1 0 

Parity check only fails 
for row #2  
⇒ bit P2 is incorrect 

(n,k,d)=? 
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Rectangular Code Corrects Single Errors 

Claim: The HD of the rectangular code with r rows 
and c columns is 3.  Hence, it is a single error 
correction (SEC) code. 

Code rate = rc / (rc + r + c). 
D1 D2 

D5 D6 

P3 

P5 

P1 

P2 

D3 D4 

D7 D8 

D9 D10 D11 D12 

P4 P7 P6 
Proof: Three cases. 
(1) Msgs with HD 1 à differ in 1 row and 1 col parity 
(2) Msgs with HD 2 à differ in either row OR col or 
both à HD >= 4 here. 
(3) Msgs with HD 3 or more à systematic code so 
differ in that many bits 

If we add an overall parity bit P, 
we get a (rc+r+c+1, rc, 4) code 
 
Improves error detection but not 
correction capability P 
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Decoding Rectangular Parity Codes 

Receiver gets possibly corrupted word, w. 

Calculates all the parity bits from the data bits. 

If no parity errors, return rc bits of data. 

Single row or column parity bit error à rc data 
bits are fine, return them 

If parity of row x and parity of column y are in 
error, then the data bit in the (x,y) position is 
wrong; flip it and return the rc data bits 

All other parity errors are uncorrectable.  Return 
the data as-is, flag an “uncorrectable error” 
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How Many Parity Bits Do We Need? 
•  We have n-k parity bits, which collectively can 

represent 2n-k possibilities 
•  For single-bit error correction, parity bits need to 

represent two sets of cases: 
–  Case 1: No error has occurred (1 possibility) 
–  Case 2: Exactly one of the code word bits has an 

error (n possibilities, not k) 

•  So we need n+1 ≤ 2n-k  

                        n ≤ 2n-k – 1 
•  Hamming codes correct single errors with this 

minimum number of parity bits (7,4,3), (15,11,3), 
… 
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Example: (7,4,3) Hamming Code 
•  Use multiple parity bits, each covering a 

subset of the data bits. 

•  No two message bits belong to exactly the 
same subsets, so a single-bit error will 
generate a unique set of parity check errors. 

D2 

D1 

D4 
D3 

P1 P2 

P3 

Suppose we check the 
parity and discover that P2 
and P3 indicate an error? 
    bit D3 must have flipped 
 
What if only P3 indicates 
an error? 
    P3 itself had the error! P1 = D1⊕D2⊕D4 

P2 = D1⊕D3⊕D4 
P3 = D2⊕D3⊕D4 

Modulo-2 
addition, 
aka XOR 
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Syndrome Decoding 
•  After receiving the (possibly corrupted) message, 

compute a syndrome bit (Ei) for each parity bit 
 
 
 

•  If all the Ei are zero: no errors 
•  Otherwise the particular combination of the Ei can 

be used to figure out which bit to correct 
 
 

E1 = D1 ⊕ D2 ⊕ D4 ⊕ P1 
E2 = D1 ⊕ D3 ⊕ D4 ⊕ P2 

E3 = D2 ⊕ D3 ⊕ D4 ⊕ P3 

D2 

D1 

D4 
D3 

P1 P2 

P3 

P1 = D1⊕D2⊕D4 
P2 = D1⊕D3⊕D4 
P3 = D2⊕D3⊕D4 



9/29/10 

3 

6.02 Fall 2011 Lecture 6, Slide #10 

Linear Block Codes: Wrap-Up 

•  (n,k,d) codes with rate k/n  
•  Code words are linear operations over message 

bits: sum of any two code words is a code word 

•  Message + 1 parity bit: (n+1,n,2) code 
–  Good code rate, but only 1-bit error detection 

•  Replicating each bit c times is a (c,1,c) code 
–  Simple way to get great error correction; poor code rate 

•  Hamming single-error correcting codes are  
(n, n-m, 3) where n = 2m - 1 for m > 1 

•  Adding an overall parity bit makes the code (n+1,n-p,4) 

•  Rectangular parity codes are (rc+r+c, rc, 3) codes 
–  Rate not as good as Hamming codes 
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Burst Errors 
Correcting single-bit errors is nice, but 
in many situations errors come in 
bursts many bits long (e.g., fading or 
burst of interference on wireless 
channel, damage to storage media 
etc.).  How does single-bit error 
correction help with that? 
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P(pkt i was lost | pkt i-x was lost) 

Note: P(pkt lost) ≈ s*P(bit error) where s = pkt size 

Experiment on 
802.11g network 
(static and mobile) 
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Coping with Burst Errors by Interleaving 

Well, can we think of a way to turn a B-bit error burst 
into B single-bit errors? 

B 

Problem: Bits from a 
particular codeword are 
transmitted sequentially, 
so a B-bit burst produces 
multi-bit errors. 

Solution: interleave bits 
from B different codewords.  
Now a B-bit burst produces 
1-bit errors in B different 
codewords. 

Row-by-row 
transmission 
order 

B 
Col-by-col 
transmission 
order 


