

6.02 Fall 2011

Lecture \#6: Channel Coding - 2

- Linear (n, k) block codes
- Rectangular parity codes
- Hamming codes
- Combating burst errors: interleaving

(n, k) Systematic Linear Block Codes

- Split data into k-bit blocks
- Add ($n-k$) parity bits to each block using ($n-k$) linear equations, making each block n bits long

- Every linear code can be represented in systematic form

Rectangular Code Corrects Single Errors

Claim: The HD of the rectangular code with r rows and c columns is 3 . Hence, it is a single error correction (SEC) code.

Code rate $=r c /(r c+r+c)$.
If we add an overall parity bit P,
we get a ($r c+r+c+1, r c, 4$) code
Improves error detection but not correction capability
Proof: Three cases.

(1) Msgs with HD $1 \rightarrow$ differ in 1 row and 1 col parity
(2) Msgs with HD $2 \rightarrow$ differ in either row OR col or both \rightarrow HD >= 4 here.
(3) Msgs with HD 3 or more \rightarrow systematic code so differ in that many bits

Decoding Rectangular Parity Codes

Receiver gets possibly corrupted word, w.
Calculates all the parity bits from the data bits.
If no parity errors, return $r c$ bits of data.
Single row or column parity bit error $\rightarrow r c$ data bits are fine, return them

If parity of row x and parity of column y are in error, then the data bit in the (x, y) position is wrong; flip it and return the $r c$ data bits
All other parity errors are uncorrectable. Return the data as-is, flag an "uncorrectable error"

How Many Parity Bits Do We Need?

- We have n-k parity bits, which collectively can represent $2^{\mathrm{n}-\mathrm{k}}$ possibilities
- For single-bit error correction, parity bits need to represent two sets of cases:
- Case 1: No error has occurred (1 possibility)
- Case 2: Exactly one of the code word bits has an error (n possibilities, not k)
- So we need $\mathrm{n}+1 \leq 2^{\mathrm{n}-\mathrm{k}}$

$$
\mathrm{n} \leq 2^{\mathrm{n}-\mathrm{k}}-1
$$

- Hamming codes correct single errors with this minimum number of parity bits $(7,4,3),(15,11,3)$, ...

Example: $(7,4,3)$ Hamming Code

- Use multiple parity bits, each covering a subset of the data bits.
- No two message bits belong to exactly the same subsets, so a single-bit error will generate a unique set of parity check errors.

Syndrome Decoding

- After receiving the (possibly corrupted) message, compute a syndrome bit $\left(\mathrm{E}_{\mathrm{i}}\right)$ for each parity bit

$$
\begin{aligned}
& \mathrm{E}_{1}=\mathrm{D}_{1} \oplus \mathrm{D}_{2} \oplus \mathrm{D}_{4} \oplus \mathrm{P}_{1} \\
& \mathrm{E}_{2}=\mathrm{D}_{1} \oplus \mathrm{D}_{3} \oplus \mathrm{D}_{4} \oplus \mathrm{P}_{2} \\
& \mathrm{E}_{3}=\mathrm{D}_{2} \oplus \mathrm{D}_{3} \oplus \mathrm{D}_{4} \oplus \mathrm{P}_{3}
\end{aligned}
$$

- If all the E_{i} are zero: no errors
- Otherwise the particular combination of the E_{i} can be used to figure gut which bit to correct

Linear Block Codes: Wrap-Up

- (n,k,d) codes with rate k / n
- Code words are linear operations over message bits: sum of any two code words is a code word
- Message + 1 parity bit: $(\mathrm{n}+1, \mathrm{n}, 2)$ code
- Good code rate, but only 1 -bit error detection
- Replicating each bit ctimes is a ($\mathrm{c}, 1, \mathrm{c}$) code
- Simple way to get great error correction; poor code rate
- Hamming single-error correcting codes are ($\mathrm{n}, \mathrm{n}-\mathrm{m}, 3$) where $\mathrm{n}=2^{\mathrm{m}}-1$ for $\mathrm{m}>1$
- Adding an overall parity bit makes the code ($\mathrm{n}+1, \mathrm{n}-\mathrm{p}, 4$)
- Rectangular parity codes are ($\mathrm{rc}+\mathrm{r}+\mathrm{c}, \mathrm{rc}, 3$) codes - Rate not as good as Hamming codes

Coping with Burst Errors by Interleaving

Well, can we think of a way to turn a B-bit error burst into B single-bit errors?

Problem: Bits from a particular codeword are transmitted sequentially, so a B-bit burst produces multi-bit errors.

Col-by-col transmission order

Solution: interleave bits from B different codewords. Now a B-bit burst produces 1 -bit errors in B different codewords.
 bursts many bits long (e.g., fading or burst of interference on wireless
channel, damage to storage media etc.). How does single-bit error correction help with that? ecture 6, Slide \#1

