

InTRODUCTION TO EECS II

DIGITAL

COMMUNICATION şstems

6.02 Fall 2011 Lecture \#7

Convolutional codes

- State-machine view 8 trellis
- Most likely message to have been transmitted

Do We Need Better Channel Coding?

The graph shows how a rate $1 / 2$ "rectangular" block code experimentally improves over using no coding at all, especially at higher SNRs (lower overall BER).

But there's considerable room for improvement

Can we find more effective rate$1 / 2$ codes, for instance?

Convolutional Codes

- Like the block codes discussed earlier, send parity bits computed from blocks of message bits
- Unlike block codes, don't send message bits, send only the parity bits!
- The code rate of a convolutional code tells you how many parity bits are sent for each message bit. We'll mostly be talking about rate $1 / r$ codes.
- Use a sliding window to select which message bits are participating in the parity calculations. The width of the window (in bits) is called the code's constraint length

0101100101100011...

Shift-register View

- One often sees convolutional encoders described with a block diagram like the following:

- Think of this a "black box": message in, parity out
- Input bits arrive one-at-a-time from the left
- The box computes the parity bits using the incoming bit and the K-1 previous message bits
- At the end of the bit time, the saved message bits are shifted right by one, and the incoming bit moves into the left position
\qquad

Parity Bit Equations

- A convolutional code generates sequences of parity bits from sequences of message bits: I can see why they call

$$
p_{i}[n]=\left(\sum_{j=0}^{K-1} g_{i}[j] x[n-j]\right) \stackrel{?}{\boldsymbol{\Omega}} \bmod 2
$$

- K is the constraint length of the code
- The larger K is, the more times a particular message bit is used when calculating parity bits
\rightarrow greater redundancy
\rightarrow better error correction possibilities (in general)
- g_{i} is the K-element generator polynomial for parity bit p_{i}
- Each element $\mathrm{g}_{\mathrm{i}}[\mathrm{n}]$ is either 0 or 1
- More than one parity sequence can be generated from the same message; the simplest choice is to use 2 generator polynomials
\qquad

Example: Transmit message 1011

Processing $x[0]$

Processing x[2]

Processing $\mathrm{x}[1]$

Processing $\mathrm{x}[3]$
$\mathrm{p}_{0}[\mathrm{n}]=\mathrm{x}[\mathrm{n}] \oplus \mathrm{x}[\mathrm{n}-1] \oplus \mathrm{x}[\mathrm{n}-2]$
6.02 Fall $2011 \quad p_{1}[n]=x[n] \oplus x[n-1]$ \qquad

Convolutional Codes (cont'd.)

- We'll transmit the parity sequences, not the message itself - As we'll see, we can recover the message sequences from the parity sequences
- Each message bit is "spread across" K elements of each parity sequence, so the parity sequences are better protection against bit errors than the message sequence itself
- If we're using multiple generators, construct the transmit sequence by interleaving the bits of the parity sequences:

$$
\text { xmit }=p_{0}[0], p_{1}[0], p_{0}[1], p_{1}[1], p_{0}[2], p_{1}[2], \ldots
$$

- Code rate is 1 /number_of_generators
- 2 generator polynomials \rightarrow rate $=1 / 2$
- Engineering tradeoff: using more generator polynomials improves bit-error correction but decreases rate of the code (the number of message bits/s that can be transmitted)

Example

- Using two generator polynomials:
- $\mathrm{g}_{0}=1,1,1,0,0, \ldots$ abbreviated as 111 for $K=3$ code
$-\mathrm{g}_{1}=1,1,0,0,0, \ldots$ abbreviated as 110 for $K=3$ code
- Writing out the equations for the parity sequences
$-\mathrm{p}_{0}[\mathrm{n}]=(\mathrm{x}[\mathrm{n}]+\mathrm{x}[\mathrm{n}-1]+\mathrm{x}[\mathrm{n}-2]) \bmod 2$
$-p_{1}[n]=(x[n]+x[n-1]) \bmod 2$
- Let $x[n]=[1,0,1,1, \ldots]$; as usual $x[n]=0$ when $n<0$:
$-\mathrm{p}_{0}[0]=(1+0+0) \bmod 2=1, \mathrm{p}_{1}[0]=(1+0) \bmod 2=1$
$-\mathrm{p}_{0}[1]=(0+1+0) \bmod 2=1, \mathrm{p}_{1}[1]=(0+1) \bmod 2=1$
$-\mathrm{p}_{0}[2]=(1+0+1) \bmod 2=0, \mathrm{p}_{1}[2]=(1+0) \bmod 2=1$
$-\mathrm{p}_{0}[3]=(1+1+0) \bmod 2=0, \mathrm{p}_{1}[3]=(1+1) \bmod 2=0$
- Transmit: $1,1,1,1,0,1,0,0, \ldots$
6.02 Fall 2011

Lecture 7 , Slide \#9

State-Machine View

- Example: $K=3$, rate $-1 / 2$ convolutional code
- States labeled with $\mathrm{x}[\mathrm{n}-1] \times[\mathrm{n}-2]$
- Arcs labeled with $\mathrm{x}[\mathrm{n}] / \mathrm{p}_{0} \mathrm{p}_{1}$
- msg=101100; xmit = 111101000110
\qquad

Example Generator Polynomials

Table 1-Generator Polynomials found by Busgang for good rate $1 / 2$ codes

Constraint Length	$\mathbf{G}_{\mathbf{1}}$	$\mathbf{G}_{\mathbf{2}}$
3	110	111
4	1101	1110
5	11010	11101
6	110101	111011
7	110101	110101
8	110111	1110011
9	110111	111001101
10	110111001	1110011001

Next lecture: Concept of free distance of a convolutional code, as a measure of its error correction power 6.02 Fall 201

From a State Machine to a Trellis

$x(n-1) x(n-2)$ \qquad
00
01$]_{1 / 11}^{0,000}$
10

11

- Example: $K=3$, rate $-1 / 2$ convolutional code $-\mathrm{G}_{0}=111: \mathrm{p}_{0}=1 * \mathrm{x}[\mathrm{n}] \oplus 1^{*} \mathrm{x}[\mathrm{n}-1] \oplus 1^{*} \mathrm{x}[\mathrm{n}-2]$ $-\mathrm{G}_{1}=110: \mathrm{p}_{1}=1 * \mathrm{x}[\mathrm{n}] \oplus 1 * \mathrm{x}[\mathrm{n}-1] \oplus 0 * \mathrm{x}[\mathrm{n}-2]$
- States labeled with $x[n-1] x[n-2]$
- Arcs labeled with $x[n] / p_{0} p_{1}$

Trellis View @ Transmitter

$\mathrm{x}[\mathrm{n}]$

00

01

11
$x[n-1] x[n-2]$

Example

- Using $K=3$, rate- $1 / 2$ code from earlier slides

Received:
111011000110

- Some errors have occurred..
What's the 4-bit message?
- Look for message whose xmit bits are closest to rcvd bits Most likely: 1011

Msg	Xmit*	Rcvd	d
0000	000000000000	111011000110	7
0001	000000111110		8
0010	000011111000		8
0011	000011010110		4
0100	001111100000		6
0101	001111011110		5
0110	001101001000		7
0111	001100100110		6
1000	111110000000		4
1001	111110111110		5
1010	111101111000		7
1011	111101000110		2
1100	110001100000		5
1101	110001011110		4
1110	110010011000		6
1111	110010100110		3
Msg pa	ded with 2 zeroes	fore xmit	

Using Convolutional Codes

Transmitte

- Beginning at starting state, processes message bit-by-bit
- For each message bit: makes a state transition, sends p_{i}
- Pad message with $K-1$ zeros to ensure return to starting state
- Receiver
- Doesn't have direct knowledge of transmitter's state transitions; only knows (possibly corrupted) received parity bits, p_{i}
- Must find most likely sequence of transmitter states that could have generated the received parity bits, p_{i}
- If BER < $1 / 2, P$ (more errors) < P (fewer errors)
- Theorem: When BER < $1 / 2$, maximum-likelihood message sequence is the one that generated the codeword (here, sequence of parity bits) with the smallest Hamming distance from the received codeword (here, parity bits)
- I.e., find nearest valid codeword closest to the received codeword

Decoding: Finding the

 Maximum-Likelihood Path

Given the received parity bits, the receiver must find the mostlikely sequence of transmitter states, i.e., the path through the rellis that minimizes the Hamming distance between the received parity bits and the parity bits the transmitter would have sent had it followed that state sequence.

One solution: Viterbi decoding - come to the next lecture! 02 Fall 201

