
10/5/11

1

6.02 Fall 2011 Lecture 8, Slide #1

6.02 Fall 2011
Lecture #8

•  State machines & trellises (recap)
•  Path and branch metrics
•  Viterbi decoding of convolutional codes
•  Hard decision vs. soft decision decoding
•  Puncturing, free distance, and performance

6.02 Fall 2011 Lecture 8, Slide #2

State Machine View

•  Example: K=3, rate ½ convolutional code
•  States labeled with x[n-1] x[n-2]

•  Arcs labeled with x[n]/p0p1
•  msg=101100; xmit = 11 11 01 00 01 10

00 10

01 11

0/00

1/11

1/10
0/01

0/10 1/01

0/11 1/00

STARTING STATE

The state machine is the same
for all K=3 codes. Only the pi
labels change depending on
number and values for the
generator polynomials.

6.02 Fall 2011 Lecture 8, Slide #3

Using Convolutional Codes
•  Transmitter

–  Beginning at starting state, processes message bit-by-bit
–  For each message bit: makes a state transition, sends parity bits

•  Receiver
–  Doesn’t have direct knowledge of transmitter’s state transitions;

only knows (possibly corrupted) received parity bits

–  Must find most likely sequence of transmitter states that could
have generated the received parity bits, pi

–  If BER is < 1/2, then

•  Most likely message sequence is the one that generated the
sequence of parity bits with the smallest Hamming distance
from the actual received pi

6.02 Fall 2011 Lecture 8, Slide #4

Example
•  Using K=3, rate ½

code from earlier
slides

•  Received:
11101100011000

•  Some errors have
occurred…

•  What’s the 4-bit
message?

•  Look for message
whose xmit bits are
closest to rcvd bits

Msg Xmit* Rcvd d

0000 000000000000

111011000110

7

0001 000000111110 8

0010 000011111000 8

0011 000011010110 4

0100 001111100000 6

0101 001111011110 5

0110 001101001000 7

0111 001100100110 6

1000 111110000000 4

1001 111110111110 5

1010 111101111000 7

1011 111101000110 2

1100 110001100000 5

1101 110001011110 4

1110 110010011000 6

1111 110010100110 3
Most likely: 1011

*Msg padded with 2 zeros before transmission

10/5/11

2

6.02 Fall 2011 Lecture 8, Slide #5

Trellis View @ Transmitter

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

time

x[n-1]x[n-2]

x[n] 1 0 1 1 0 0

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

6.02 Fall 2011 Lecture 8, Slide #6

Viterbi Algorithm
•  Want: Most likely message sequence

•  Have: (possibly corrupted) received parity sequences
•  Viterbi algorithm for a given K and r:

–  Works incrementally to compute most likely message sequence

–  Uses two metrics

•  Branch metric: BM(xmit,rcvd) proportional to likelihood that
transmitter sent xmit given that we’ve received rcvd.
–  “Hard decision”: use digitized bits, compute Hamming distance

between xmit and rcvd. Smaller distance is more likely if BER <
1/2

–  “Soft decision”: use function of received voltages directly

•  Path metric: PM[s,i] for each state s of the 2K-1 transmitter
states and bit time i where 0 ≤ i < len(message).
–  PM[s,i] = most likely sum of BM(xmitm,received parity) over all

message sequences m that place transmitter in state s at time i
–  PM[s,i+1] computed from PM[s,i] and p0[i],…,pr-1[i]

6.02 Fall 2011 Lecture 8, Slide #7

Hard-decision Branch Metric
•  BM = Hamming distance

between expected parity bits and
received parity bits

•  Compute BM for each transition
arc in trellis

–  Example: received parity = 00

–  BM(00,00) = 0
BM(01,00) = 1
BM(10,00) = 1
BM(11,00) = 2

•  Will be used in computing
PM[s,i+1] from PM[s,i].

•  We want to use the most likely
BM, which, means minimum
BM.

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

Time: i i+1

S
ta

te

00
0
2

1
1

0
2

1
1

6.02 Fall 2011 Lecture 8, Slide #8

Computing PM[s,i+1]
Starting point: we’ve computed
PM[s,i], shown graphically as label in
trellis box for each state at time i.

Example: PM[00,i] = 1 means there
was 1 bit error detected when
comparing received parity bits to
what would have been transmitted
when sending the most likely
message, considering all messages
that place the transmitter in state 00
at time i.

Q: What’s the most likely state s for
the transmitter at time i?

A: state 00 (smallest PM[s,i])

1

3

3

2

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

Time: i i+1

S
ta

te

00
0
2

1
1

0
2

1
1

10/5/11

3

6.02 Fall 2011 Lecture 8, Slide #9

Computing PM[s,i+1] cont’d.
Q: If the transmitter is in state s at
time i+1, what state(s) could it have
been in at time i?

A: For each state s, there are two
predecessor states α and β in the
trellis diagram

Example: for state 01, α=10 and β=11.

Any message sequence that leaves
the transmitter in state s at time i+1
must have left the transmitter in
state α or state β at time i.

1

3

3

2

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

Time: i i+1

S
ta

te

00
0
2

1
1

0
2

1
1

6.02 Fall 2011 Lecture 8, Slide #10

Computing PM[s,i+1] cont’d.
Example cont’d: to arrive in state 01
at time i+1, either

1) The transmitter was in state 10 at
time i and the ith message bit was a
0. If that’s the case, the transmitter
sent 11 as the parity bits and there
were 2 bit errors since we received
00. Total bit errors = PM[10,i] + 2 = 5
OR

2) The transmitter was in state 11 at
time i and the ith message bit was a
0. If that’s the case, the transmitter
sent 01 as the parity bits and there
was 1 bit error since we received 00.
Total bit errors = PM[11,i] + 1 = 3

Which is more likely?

1

3

3

2

?

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

Time: i i+1

S
ta

te

00
0
2

1
1

0
2

1
1

6.02 Fall 2011 Lecture 8, Slide #11

Computing PM[s,i+1] cont’d.
Formalizing the computation:

PM[s,i+1] = min(PM[α,i] + BM[α→s],
 PM[β,i] + BM[β→s])

Example:

PM[01,i+1] = min(PM[10,i] + 2,

 PM[11,i] + 1)
 = min(3+ 2,2+1) = 3

Notes:

1)  Remember which arc was min; saved
arcs will form a path through trellis

2)  If both arcs have same sum, break
tie arbitrarily (e.g., when computing
PM[11,i+1])

1

3

3

2

1

3

3

3

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

Time: i i+1

S
ta

te

00
0
2

1
1

0
2

1
1

6.02 Fall 2011 Lecture 8, Slide #12

Finding the Maximum-Likelihood Path

•  Path metric: number of errors on maximum-likelihood path
to given state (min of all paths leading to state)

•  Branch metric: for each arrow, the Hamming distance
between received parity and expected parity

0

∞

∞

∞

00

01

10

11

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

10/5/11

4

6.02 Fall 2011 Lecture 8, Slide #13

Viterbi Algorithm

•  Compute branch metrics for next set of parity bits

•  Compute path metric for next column
–  add branch metric to path metric for old state

–  compare sums for paths arriving at new state

–  select path with smallest value (fewest errors, most likely)

0

∞

∞

∞

00

01

10

11

00:2
11:0

10:1

01:1

00:2
11:0

01:1
10:1

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

2

∞

0

∞

6.02 Fall 2011 Lecture 8, Slide #14

Example (cont’d.)

•  After receiving 3 pairs of parity bits we can see that all ending
states are equally likely

•  Power of convolutional code: use future information to
constrain choices about most likely events in the past

0

∞

∞

∞

00

01

10

11

3

1

3

1

00:1
11:1

10:0

01:2

00:1
11:1

01:2
10:0

2

2

2

2

00:2
11:0

10:1

01:1

00:2
11:0

01:1
10:1

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

2

∞

0

∞

6.02 Fall 2011 Lecture 8, Slide #15

Survivor Paths

•  Notice that some paths don’t continue past a certain state
–  Will not participate in finding most-likely path: eliminate
–  Remaining paths are called survivor paths

–  When there’s only one path: we’ve got a message bit!

0

∞

∞

∞

00

01

10

11

3

1

3

1

2

2

2

2

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

2

∞

0

∞

6.02 Fall 2011 Lecture 8, Slide #16

Example (cont’d.)

•  When there are “ties” (sum of metrics are the same)
–  Make an arbitrary choice about incoming path
–  If state is not on most-likely path: choice doesn’t matter

–  If state is on most-likely path: choice may matter and error
correction has failed (mark state with underline to tell)

0

∞

∞

∞

00

01

10

11

3

1

3

1

2

2

2

2

2

3

3

2

00:0
11:2

10:1

01:1

00:0
11:2

01:1
10:1

3

2

3

4

00:1
11:1

10:2

01:0

00:1
11:1

01:0
10:2

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

2

∞

0

∞

10/5/11

5

6.02 Fall 2011 Lecture 8, Slide #17

Example (cont’d.)

•  When we reach end of received parity bits
–  Each state’s path metric indicates how many errors have

happened on most-likely path to state

–  Most-likely final state has smallest path metric

–  Ties means end of message uncertain (but survivor paths may
merge to a unique path earlier in message)

0

∞

∞

∞

00

01

10

11

3

1

3

1

2

2

2

2

2

3

3

2

3

2

3

4

2

4

4

4

00:1
11:1

10:0

01:2

00:1
11:1

01:2
10:0

11 Rcvd: 10 11 00 01 10

2

∞

0

∞

6.02 Fall 2011 Lecture 8, Slide #18

Traceback

•  Use most-likely path to determine message bits
–  Trace back through path: message in reverse order
–  Message bit determined by high-order bit of each state

(remember that came from message bit when encoding)

–  Message in example: 101100 (w/ 2 transmission errors)

0

∞

∞

∞

00

01

10

11

3

1

3

1

2

2

2

2

2

3

3

2

3

2

3

4

2

4

4

4

11 Rcvd: 10 11 00 01 10

2

∞

0

∞

1 Msg: 0 1 1 0 0

6.02 Fall 2011 Lecture 8, Slide #19

Viterbi Algorithm with Hard Decisions
•  Branch metrics measure the likelihood by comparing received

parity bits to possible transmitted parity bits computed from
possible messages.

•  Path metric PM[s,i] proportional to likelihood of transmitter
being in state s at time i, assuming the mostly likely message
of length i that leaves the transmitter in state s.

•  Most likely message? The one that produces the most likely
PM[s,N].

•  At any given time there are 2K-1 most-likely messages we’re
tracking → time complexity of algorithm grows exponentially
with constraint length K.

6.02 Fall 2011 Lecture 8, Slide #20

Hard Decisions

•  As we receive each bit it’s immediately digitized to
“0” or “1” by comparing it against a threshold
voltage
–  We lose the information about how “good” the bit is:

a “1” at .9999V is treated the same as a “1” at .5001V

•  The branch metric used in the Viterbi decoder is
the Hamming distance between the digitized
received voltages and the expected parity bits
–  This is called hard-decision decoding

•  Throwing away information is (almost) never a good
idea when making decisions
–  Can we come up with a better branch metric that uses

more information about the received voltages?

10/5/11

6

6.02 Fall 2011 Lecture 8, Slide #21

Soft Decision Decoding
•  In practice, the receiver gets a voltage level, V, for each

received parity bit
–  Sender sends V0 or V1 volts; V in (-∞,∞) assuming additive Gaussian

noise

•  Idea: Pass received voltages to decoder before digitizing

•  Define a “soft” branch metric as the square of the Euclidian
distance between received voltages and expected voltages

•  Soft-decision decoder chooses path that minimizes sum of the
squares of the Euclidean distances between received and
expected voltages
–  Different BM & PM values, but otherwise the same algorithm

0.0,0.0

0.0,1.0 1.0,1.0

1.0,0.0

Vp0,Vp1 “Soft” metric when
expected parity bits
are 0,0 Vp0

2
+ Vp1

2

6.02 Fall 2011 Lecture 8, Slide #22

Performance of Viterbi Decoding

•  Complexity is linear in message length and
exponential in K, the constraint length

•  Code rate: 1/r

•  How to get higher rates or other rates?
–  Answer: Puncturing

•  How much error correcting capability do we get
from a convolutional code?
–  In general, larger values of K and r (the number of parity

streams or generators) provide higher error tolerance

–  But what determines the error correction ability? (I.e.,
what’s the equivalent of the Hamming distance?)

–  Answer: Free distance

6.02 Fall 2011 Lecture 8, Slide #23

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

time

x[n-1]x[n-2]

4

5

x[n] 0 0 0 0 0 0

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

2

00 00 00

The free distance is the difference in path metrics between the output when the input is
all zeroes, and the output the first input bit along being a ‘1’. In this example, it is

5 because the first transition outputs ‘11’, the second outputs ‘11’, and the third ‘10’,
at which time it converges to the correct state.

Free Distance of a Convolutional Code

6.02 Fall 2011 Lecture 8, Slide #24

Performance (BER) v. SNR for rate-1/2 codes

