
introduction to ebcs it
DIGITAL COMMUNICATION systems

6.02 Fall 2011 Lecture \#8

- State machines \& trellises (recap)

Path and branch metrics

- Viterbi decoding of convolutional codes
- Hard decision vs. soft decision decoding
- Puncturing, free distance, and performance

Using Convolutional Codes

- Transmitter
- Beginning at starting state, processes message bit-by-bit
- For each message bit: makes a state transition, sends parity bits
- Receiver
- Doesn't have direct knowledge of transmitter's state transitions; only knows (possibly corrupted) received parity bits
- Must find most likely sequence of transmitter states that could have generated the received parity bits, p_{i}
- If BER is $<1 / 2$, then
- Most likely message sequence is the one that generated the sequence of parity bits with the smallest Hamming distance from the actual received p_{i}

State Machine View

The state machine is the same for all $K=3$ codes. Only the p_{i} labels change depending on number and values for the generator polynomials

- Example: $\mathrm{K}=3$, rate $1 / 2$ convolutional code
- States labeled with $x[n-1]$ x[n-2]
- Arcs labeled with $x[n] / p_{0} p_{1}$
- $\mathrm{msg}=101100 ;$ xmit = 111101000110
.02 Fall 2011 Lecture 8 , Slide \#2

Example

- Using $K=3$, rate $1 / 2$ code from earlier slides
- Received

11101100011000

- Some errors have occurred...
What's the 4-bit message?
- Look for message whose xmit bits are closest to rcvd bits Most likely: 1011

Msg	Xmit*	Rcvd	${ }^{\text {d }}$
0000	000000000000	111011000110	7
0001	000000111110		8
0010	000011111000		8
0011	000011010110		4
0100	001111100000		6
0101	001111011110		5
0110	001101001000		7
0111	001100100110		6
1000	111110000000		4
1001	111110111110		5
1010	111101111000		7
1011	111101000110		2
1100	110001100000		5
1101	110001011110		4
1110	110010011000		6
1111	110010100110		3
Msg pa	ded with 2 zeros	ore transmission	

Trellis View @ Transmitter

$\mathrm{x}[\mathrm{n}]$

00
\qquad \square $10-$ ${ }^{0} 1 / 10$

11
$x[n-1 \mid x[n-2]$

Hard-decision Branch Metric

- $\mathrm{BM}=$ Hamming distance
between expected parity bits and received parity bits
- Compute BM for each transition arc in trellis
- Example: received parity $=00$
- $\operatorname{BM}(00,00)=0$ $\operatorname{BM}(01,00)=1$ $\mathrm{BM}(10,00)=1$
$\mathrm{BM}(11,00)=2$
- Will be used in computing PM $[\mathrm{s}, \mathrm{i}+1]$ from $\mathrm{PM}[\mathrm{s}, \mathrm{i}]$.
- We want to use the most likely BM, which, means minimum BM.

Viterbi Algorithm

- Want: Most likely message sequence
- Have: (possibly corrupted) received parity sequences
- Viterbi algorithm for a given K and r :
- Works incrementally to compute most likely message sequence
- Uses two metrics
- Branch metric: $\mathrm{BM}(\mathrm{xmit}, \mathrm{rcvd})$ proportional to likelihood that transmitter sent x mit given that we' ve received rcvd.
- "Hard decision": use digitized bits, compute Hamming distance between xmit and rcvd. Smaller distance is more likely if BER < 1/2
- "Soft decision": use function of received voltages directly
- Path metric: $\mathrm{PM}[\mathrm{s}, \mathrm{i}]$ for each state s of the $2^{\mathrm{K}-1}$ transmitter states and bit time i where $0 \leq \mathrm{i}<l$ len(message).
- PM[s,i] = most likely sum of $\mathrm{BM}\left(\mathrm{xmit}_{\mathrm{m}}\right.$, received parity) over all message sequences m that place transmitter in state s at time i - PM[s,i+1] computed from PM[s,i] and $\mathrm{p}_{0}[\mathrm{i}], \ldots, \mathrm{p}_{\mathrm{r}-1}[\mathrm{i}]$

Computing PM[s,i+1]

Starting point: we've computed
$\mathrm{PM}[\mathrm{s}, \mathrm{i}]$, shown graphically as label in trellis box for each state at time i.

Q: What's the most likely state s for the transmitter at time i ?
A: state 00 (smallest PM[s,i])

Computing PM[s,i+1] cont' d.

Q: If the transmitter is in state s at time i+1, what state(s) could it have been in at time i?

the transmitter in state s at time $i+1$ must have left the transmitter in state α or state β at time i.
A: For each state s, there are two predecessor states α and β in the trellis diagram

Example: for state $01, \alpha=10$ and $\beta=11$.
Any message sequence that leaves

Computing PM[s,i+1] cont' d.

Formalizing the computation:
$\mathrm{PM}[\mathrm{s}, \mathrm{i}+1]=\min (\mathrm{PM}[\alpha, \mathrm{i}]+\mathrm{BM}[\alpha \rightarrow \mathrm{s}]$, $\operatorname{PM}[\beta, \mathrm{i}]+\mathrm{BM}[\beta \rightarrow \mathrm{s}])$

Example:
$\mathrm{PM}[01, \mathrm{i}+1]=\min (\mathrm{PM}[10, \mathrm{i}]+2$,

$$
\operatorname{PM}[11, \mathrm{i}]+1)
$$

$=\min (3+2,2+1)=3$
Notes:

1) Remember which arc was min; saved arcs will form a path through trellis
2) If both arcs have same sum, break tie arbitrarily (e.g., when computing PM $[11, i+1])$

Computing PM $[\mathrm{s}, \mathbf{i}+1]$ cont' d .

Example cont' d: to arrive in state 01 at time i+1, either
1)The transmitter was in state 10 at time i and the $i^{\text {th }}$ message bit was a 0 . If that's the case, the transmitter sent 11 as the parity bits and there were 2 bit errors since we received 00. Total bit errors $=\mathrm{PM}[10, \mathrm{i}]+2=5$ OR
2)The transmitter was in state 11 at time i and the $i^{\text {th }}$ message bit was a 0 . If that's the case, the transmitter sent 01 as the parity bits and there was 1 bit error since we received 00 .
Total bit errors = PM[11,i] + $1=3$
Which is more likely?

Finding the Maximum-Likelihood Path

Rcvd:	11	10	11	00	01	10

- Path metric: number of errors on maximum-likelihood path to given state (min of all paths leading to state)
- Branch metric: for each arrow, the Hamming distance between received parity and expected parity

Viterbi Algorithm

- Compute branch metrics for next set of parity bits
- Compute path metric for next column
- add branch metric to path metric for old state
- compare sums for paths arriving at new state
- select path with smallest value (fewest errors, most likely)

Survivor Paths

$\begin{array}{lllllll}\text { Rcvd: } & 11 & 10 & 11 & 00 & 01 & 10\end{array}$
00
01

- Notice that some paths don' t continue past a certain state
- Will not participate in finding most-likely path: eliminate
- Remaining paths are called survivor paths
- When there's only one path: we' ve got a message bit!

Example (cont'd.)

- After receiving 3 pairs of parity bits we can see that all ending states are equally likely
- Power of convolutional code: use future information to constrain choices about most likely events in the past

Example (cont'd.)

$\begin{array}{lllllll}\text { Rcvd: } & 11 & 10 & 11 & 00 & 01 & 10\end{array}$

- When there are "ties" (sum of metrics are the same)
- Make an arbitrary choice about incoming path
- If state is not on most-likely path: choice doesn't matter
- If state is on most-likely path: choice may matter and error correction has failed (mark state with underline to tell)

Example (cont' d.)

- When we reach end of received parity bits
- Each state's path metric indicates how many errors have happened on most-likely path to state
- Most-likely final state has smallest path metric
- Ties means end of message uncertain (but survivor paths may merge to a unique path earlier in message

Viterbi Algorithm with Hard Decisions

- Branch metrics measure the likelihood by comparing receive parity bits to possible transmitted parity bits computed from possible messages.
- Path metric PM[s,i] proportional to likelihood of transmitter being in state s at time i, assuming the mostly likely message of length i that leaves the transmitter in state s
- Most likely message? The one that produces the most likely PM[s,N].
- At any given time there are $2^{\mathrm{K}-1}$ most-likely messages we' re tracking \rightarrow time complexity of algorithm grows exponentially with constraint length K

Traceback

- Use most-likely path to determine message bits
- Trace back through path: message in reverse order
- Message bit determined by high-order bit of each state (remember that came from message bit when encoding)
- Message in example: 101100 (w/ 2 transmission errors)

Hard Decisions

- As we receive each bit it's immediately digitized to " 0 " or " 1 " by comparing it against a threshold voltage
- We lose the information about how "good" the bit is:
a " 1 " at .9999 V is treated the same as a " 1 " at .5001 V
- The branch metric used in the Viterbi decoder is the Hamming distance between the digitized received voltages and the expected parity bits
- This is called hard-decision decoding
- Throwing away information is (almost) never a good idea when making decisions
- Can we come up with a better branch metric that uses more information about the received voltages?

Soft Decision Decoding

- In practice, the receiver gets a voltage level, V , for each received parity bit
- Sender sends V0 or V1 volts; V in $(-\infty, \infty)$ assuming additive Gaussian noise
- Idea: Pass received voltages to decoder before digitizing
- Define a "soft" branch metric as the square of the Euclidian distance between received voltages and expected voltages

- Soft-decision decoder chooses path that minimizes sum of the squares of the Euclidean distances between received and expected voltages
.02 Fall201- Different BM \& PM values, but otherwise the same algorithm 8, slide ${ }^{2}$

Free Distance of a Convolutional Code

$x[n]$	0	0	0	0	0	0

00

11

$$
\longrightarrow \text { time }
$$

The free distance is the difference in path metrics between the output when the input is all zeroes, and the output the first input bit along being a ' 1 '. In this example, it is because the first transition outputs ' 11 ', the second outputs ' 11 ', and the third ' 10 at which time it converges to the correct state.

$$
\text { Lecture 8, slide }+23
$$

Performance of Viterbi Decoding

- Complexity is linear in message length and exponential in K, the constraint length
- Code rate: $1 / r$
- How to get higher rates or other rates?
- Answer: Puncturing
- How much error correcting capability do we get from a convolutional code?
- In general, larger values of K and r (the number of parity streams or generators) provide higher error tolerance
- But what determines the error correction ability? (I.e., what's the equivalent of the Hamming distance?)
- Answer: Free distance

