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6.02 Fall 2011 

Lecture #9 

•  Claude E. Shannon 
•  Mutual information 
•  Channel capacity  
•  Transmission at rates up to channel capacity,  
  and with asymptotically zero error 
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First a quick review of  

what we know about  

information & entropy 

…  
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Measuring Information 

I({X = xi}) = log2
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“Information is the  
resolution of uncertainty” 
Shannon 

1 bit of information corresponds to 
                   . So, for example, when the 
outcome of a fair coin toss is revealed to 
us, we have received 1 bit of information. 

pX (xi ) = 0.5

where           is the probability of the event              . 
 
The unit of measurement (when the log is base-2) is the bit 
(binary information unit). 

pX (xi ) {X = xi}

We’ve seen Shannon’s (and Hartley’s) definition of the information 
obtained on being told the outcome     of a probabilistic 
experiment    : 

xi
X
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When all the              are equal (with value         ), which corresponds 
to the case of maximum uncertainty about the outcome, then    

pX (xi ) 1 /m

H (X) = pX (xi
i=1
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Expected Information as  

Uncertainty or Entropy 

Consider a discrete random variable    , which may represent 
the set of possible messages to be transmitted at a particular 
time, taking possible values                     ,  with respective 
probabilities                                              . 
 
The entropy           of     is the expected (or mean or average)
value of the information obtained by learning the outcome of    : 

x1, x2,..., xm
pX (x1), pX (x2 ),..., pX (xm )

H (X) X
X

X

m = 2H (X )H (X) = log2m or  
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e.g., Binary entropy function  

!

         with  
probability     
 
         with 
probability  
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Claude Elwood Shannon 

 

 mathematician, electrical engineer,  

cryptographer, informatician, professor, 

juggler, unicyclist, puzzler, gadgeteer, 

rhymster, …! 
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Claude E. Shannon, 1916-2001 
1937 Masters thesis, EE Dept, MIT 
 A symbolic analysis of relay and switching 
 circuits 
 Introduced application of Boolean  
 algebra to logic circuits, and vice versa.  
 Very influential in digital circuit design. 
 “Most important Masters thesis of the century” 
 
1940 PhD, Math Dept, MIT  
 An algebra for theoretical genetics 
 To analyze the dynamics of Mendelian  
 populations. 
  
Joined Bell Labs 
“A mathematical theory of cryptography”  
1945/1949 

              “A mathematical theory of communication”  
              1948 

 
                     
 

MIT faculty 
1956-1978 
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Letter from Shannon  

to Scientific American Editor, Dec 1981 

Dear Dennis: 
 
You probably think I have been fritterin’, I say fitterin’, away my time while my 
juggling paper is languishing on the shelf. This is only half true. I have come to two 
conclusions recently: 
 
1) I am a better poet than scientist. 
2) Scientific American should have a poetry column. 
 
You may disagree with both of these, but I enclose "A Rubric on Rubik Cubics" for 
you. 
 
Sincerely, 
 
Claude E. Shannon 
 
P.S. I am still working on the juggling paper. 

http://blogs.scientificamerican.com/cross-check/2011/03/28 
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A Rubric on Rubik Cubics  
 
Strange imports come from Hungary: 
Count Dracula, and ZsaZsa G., 
Now Erno Rubik’s Magic Cube 
For PhD or country rube. 
 
This fiendish clever engineer 
Entrapped the music of the sphere. 
It’s sphere on sphere in all 3D— 
A kinematic symphony! 
 
Ta! Ra! Ra! Boom De Ay! 
One thousand bucks a day. 
That’s Rubik’s cubic pay. 
He drives a Chevrolet.  
 
Forty-three quintillion plus  
Problems Rubik posed for us. 
Numbers of this awesome kind 
Boggle even Sagan’s mind.             [! lots more!] 
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Back to information & entropy 

 (but now the part of the story that   

nobody before Shannon  

had any inkling of!)  

… 
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Mutual information 

Channel 
X Y

Noise 

I(X;Y ) = H (X)!H (X |Y )
How much is our uncertainty about     
reduced by knowing     ? 

X
Y

Evidently a central question in communication or,  
more generally, inference. 
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I(X;Y ) = I(Y ;X) = H (Y )!H (Y | X)
=1!H (Y | X = 0)pX (0)!H (Y | X =1)pX (1)
=1!!(")

e.g., Mutual information between  

input and output of  

binary symmetric channel (BSC) 

It turns out (see later slide) that                           (really?!) so 

Channe l X ! {0,1} Y ! {0,1}

!(< 0.5)

With probability             the input binary digit gets flipped 
before being presented at the output.  

!(< 0.5)

(assume equally likely 
for this example) 

I(X;Y ) = I(Y ;X)
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So mutual information between input and 

output of the BSC looks like this: 

0.5 1.0 

1.0 1!!(")

!

For low-noise channel, significant reduction in uncertainty 
about the input after observing the output. 
 
For high-noise channel, little reduction. 
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Evaluating mutual information and 

conditional entropy in general 

H (X |Y = yj ) = p(xi
i=1

m

! | yj )log2
1

p(xi | yj )
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To compute conditional entropy: 

H (X |Y ) = H (X |Y = yj )p(
i=1

m

! yj )

because 
 
 p(xi, yj ) = p(xi )p(yj | xi )
= p(yj )p(xi | y j )

I(X;Y ) = I(Y ;X)

H (X,Y ) = H (X)+H (Y | X)

= H (Y )+H (X |Y )
so 

 mutual information is symmetric 
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Channel capacity 

C =max I(X;Y ) =max H (X)!H (X |Y )}{

To characterize the channel, rather than the input and output, define 
  
 
 
where the maximization is over all possible distributions of    .    X

This is the most we can expect to reduce our uncertainty  
about     through knowledge of   , and so must be the most 
information we can expect to send through the channel on 
average, per use of the channel.  

X Y

Channel 
X Y

Noise 
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C =1!!(")! 

0.5 1.0 

1.0 
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!

e.g., capacity of the binary symmetric channel 

C =max H (Y )!H (Y | X )}{Easiest to compute as                                           , still over all  
possible probability distributions for    . The second term doesn’t  
depend  on this distribution, and the first term is maximized  
when 0 and 1 are equally likely. But this is exactly what we  
assumed in our mutual information example earlier. So:      
 

Channel 
X Y

!

X
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Information rate and bit error rate  

The memoryless binary symmetric channel (BSC) abstraction 
takes a stream of bits at its input, and puts out essentially the 
same stream of bits, except each input bit is flipped (from 0 to 1, 
or from 1 to 0) with probability !.
With no coding at the input, we have a message transmission rate 
of 1 bit/s, but the BER for message bits is   .  !

With a replication code at the input (decided by majority vote at the 
output), and repeating each input message bit    times, the effective 
BER on message bits is reduced to order          , but the message 
transmission rate is now only        .   

n
! (n+1)/2

1/ n

We know we can do better with smarter codes, but how much  
better? The notion of channel capacity tells us, as we outline next. 
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What channel capacity tells us about how fast 

and how accurately we can communicate 

… 
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The magic of asymptotically error-free 

transmission at any rate  R <C
Shannon showed that one can theoretically transmit information  
(i.e., message bits) at an average rate           with arbitrarily low error. 
 
(He also showed the converse, that transmission at an average 
rate          incurs an error probability that is lower-bounded  
by some positive number.) 

R <C

R !C

The secret: Encode blocks of     message bits into   -bit codewords, 
so              , with    and     very large.  
 
We’ve already seen hints of this in our earlier discussion of coding.  
Let’s work through an intuitive argument for the case of the BSC,  
but recognizing that a rigorous argument takes more work.  

k n
R = k / n nk
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Two special things about LARGE  

1.  Of the       points in the space of    -component binary vectors,  
only a small fraction           lie Hamming distance 1 away from a  
particular codeword; only a fraction                           lie Hamming  
distance 2 away from a codeword; etc. So there’s lots of space to  
put in codewords without their bumping into each other, even with 
errors. 

n2n

n(n!1) / 2(n+1)

n

n / 2n

110 

000 

100 

010 

111 

001 

101 

011 

Things are  
tighter for 
 n = 3
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And secondly … 

2. The law of large numbers tells us that for an   -bit codeword 
at the input of the BSC, we can expect very close to       bit  
errors in the received codeword. Moreover, all ways of getting 
errors are equally likely.  
 
 
 
 
 
Since the output entropy for a given    -bit input sequence is  
                                     
 
because the channel is used independently    times, we know that  
each input codeword produces one of  approximately             
           equally likely corrupted codewords at the output, each at  
a Hamming distance of essentially      from the correct codeword.       

n
n!

n!

nH (Y | X = xi ) = n!(")
n

2n! "( )

n

n!
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Another way to arrive at this: 

Invoking the law of large numbers as earlier, the number  
of possible corrupted codewords at the output of the BSC 
for an   -bit input codeword is approximately  
 
 
 
 
Using Stirling’s approximation 
 
 
 

n

n
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and some algebra again shows that the number of  
possible corrupted codewords at the output is  
approximately 2n! "( )
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What all this implies for high-rate,  

low-error transmission 

As in the figure on Slide 20, but now working in    dimensions, 
we want to select       corners of the unit cube, out of the 
available corners, to constitute our codewords. This corresponds  
to having     message bits in a codeword of length    , so a rate   
              . To maximize this rate, we want    as large as possible, 
i.e., select as many corners as possible to be codewords.  
 
However, to avoid decoding errors, we want to be sure the           
neighbors of any particular codeword at Hamming distance 
from it are distinct from the the corresponding neighbors of all 
other codewords.  A necessary condition for this is:  

n!

R < [1!!(")]=C

2k 2n
n

k n
R = k / n k

2n! "( )

2k2n! "( ) ! 2n " 2k < 2n
which simplifies to  

(packing the unit cube 
with as many Hamming  
      -neighborhoods 
as possible) 
n!
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The problem with the preceding calculation is it only yields a  
necessary condition for high-rate low-error transmission. It  
doesn’t show whether an actual choice of       corners is possible  
that maintains a sufficient distance between the codewords  
to have the probability of error be as small as desired.  
 
Shannon instead showed that a random choice of      codewords, 
subject to the necessary constraint          , will in fact lead to a 
probability of error that reduces exponentially as    increases.  
Specifically, the probability of error on a given transmission is  
the probability that the received corrupted codeword is  
also one of the corrupted codewords that could have been 
obtained from the transmission of one of the              other 
codewords. This probability may be estimated as 
 
 
which indeed tends exponentially to 0 with increasing    .  
 

(2k !1)2n! "( ) / 2n " 2k!n+n! (" ) = 2!(C!R)n

n
R <C

2k

2k

Random coding 

2k !1

n
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Some final comments 

1.  The penalty paid for low error rates in this framework 
is latency and computational cost: we have to wait till all      
bits of the codeword are received, and then do the necessary  
computations, before we can report any bits of the message.  
 
2. Shannon’s result says nothing about what codes are  
efficient, computationally tractable, etc. 
 
3. A huge amount of work has gone into developing good  
codes --- ones that provide substantial error protection with 
manageable computational effort and tolerable latency, while  
coming close to the Shannon limit.  
 
4. Excellent codes are known for a variety of settings.  
Among these is the class of low density parity check (LDPC)  
codes developed by Prof. Robert Gallager of EECS in his  
1960 PhD thesis at MIT, but which have only now become  
computationally tractable.      

n


