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6.02 Fall 2011 
Lecture #10 

• Measuring and modeling channel behavior 
•  Input/output descriptions of systems 
• Linear time-invariant (LTI) models 
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Digitized Samples 
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Distorted noise-free signal y[n] at receiver 
Sample number n 
(discrete-time index) 

Sample  
value 
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Modeling Channel Behavior 
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DAC: Digital-to-analog converter 
ADC: Analog-to-digital converter 
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Transmission over a Channel 
Signal x[n] from digitized samples at transmitter 

Example of distorted noise-free signal y[n] at receiver 
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Modulation (at the Transmitter) 
Think of this as adapting the digitized signal x[n] to the 
characteristics of the channel. 

e.g., acoustic channel from laptop speaker to microphone is 
not well suited to transmitting constant levels      and     to  
represent 0 and 1.  So instead transmit sinusoidal  
pressure-wave signals proportional to speaker voltages 
            
 
where     is the carrier frequency (e.g., 2kHz; wavelength  
at 340 m/s  = 17cm, comparable with speaker dimensions) and 
                                                              

              (on-off  or 
                   amplitude keying) 

or alternatively 
                  (polar or 
              phase-shift keying) 

 

v0 v1

v0 cos(2! fct) v1 cos(2! fct)
fc

v0 = 0 v1 =V > 0

v0 = !V v1 =V > 0
Could also key the frequency. 

and 
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Demodulation & Filtering (at the Receiver) 
Demodulation:  
 
   Undo the modulation.  
 
 
 
Filtering: 
 

  Process the received signal to separate the underlying  
  source signal from channel noise as much as possible.  
  Also mitigate the effects of channel distortion.  

 
 
 
 
                                          (More on these later) 
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Modeling Channel Behavior 
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System Input and Output 

S x[n] y[n] 

input response 

A discrete-time signal such as x[n] or y[n] is described by 
an infinite sequence of values, i.e., the time index n takes 
values in －∞ to +∞. The above picture is a snapshot at a  
particular time n. 
 
In the diagram above, the sequence of output values y[.] is 
the response of system S to the input sequence x[.] 
 
Question: Why didn’t I write: 
 
“In the diagram above, the sequence of output values y[n] is 
the response of system S to the input sequence x[n]”    ?? 
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Example: our hard-working discrete-time index n  
(in continuous-time, it’s t). Specifically, x[n] can denote  

 (a) the value of the signal x at a particular time n 
 (b) the sequence of values for n in －∞ to +∞, i.e., the 
     entire signal x.   

For (b), it’s often clearer to write x[.] or just x  --- particularly if  
there are multiple signals involved, because the same “dummy  
index” n shouldn’t be used for both. 
 
On the other hand, if you want to use x[n] for a specific value of 
time, it’s sometimes clearer to write x[n0]  

Notation, Notation! 
--We want to be clear, but being overly explicit about things leads 
to a lot of notational clutter. So we take shortcuts and liberties, 
“abusing” and “overloading” the notation, in the hope that context 
 and other factors will make our meaning clear.  
--But poor notation can also impede, mislead, confuse! So one has  
draw the line carefully. 
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Unit Step 

A simple but useful discrete-time signal is the unit step 
signal or function, u[n], defined as 

u[n]= 0, n < 0
1, n ! 0

"
#
$

%$
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Unit Sample 

Another simple but useful discrete-time signal is the unit 
sample signal or function, δ[n], defined as 

![n]= u[n]!u[n!1]= 0, n " 0
1, n = 0

#
$
%
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Another simple but useful discrete-time signal is the unit 
sample signal or function, δ[n], defined as 

![n]= u[n]!u[n!1]= 0, n " 0
1, n = 0

#
$
%

&%

Unit Sample 

Note that standard algebraic operations on signals  
(e.g. subtraction, addition, scaling by a constant)  
are defined in the obvious way, instant by instant.  
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Unit Sample Response & Unit Step Response 

S δ[n] h[n] 

Unit sample signal Unit sample response 

The unit sample response of a system S is the response of 
the system to the unit sample input.  We will typically 
denote the unit sample response as h[n]. 

S u[n] s[n] 

Unit step signal Unit step response 

Similarly, the unit step response s[n]: 
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Unit Step 
Decomposition 

“Rectangular-wave” digital 
signaling waveforms, of the sort 
we have been considering, are 
easily decomposed into time-
shifted, scaled unit steps (each 
transition corresponds to another 
shifted, scaled unit step). 
 
In this example, x[n] is the 
transmission of 1001110 using 4 
samples/bit: x[n]

= u[n]

!u[n! 4]

+u[n!12]

!u[n! 24]
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Let y[.] be the response of S to input x[.] 
 
If for all possible sequences x[n] and integers D 
 
 
 
 
 
 
then system S is said to be time invariant (TI).  A time 
shift in the input sequence to S results in an identical 
time shift of the output sequence. 
 
In particular, for a TI system, a shifted unit sample 
function              at the input generates an identically 
shifted unit sample response               at the output.  

![n!D]
h[n!D]

S y[n-D] x[n-D] 

Time Invariant Systems 
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Linear Systems 

Let y1[.] be the response of S to input x1[.], and y2[.] be 
the response to x2[.] 
 
If the response to linear combinations of these two 
inputs equals the same linear combination of the 
individual responses, then system S is said to be linear.  
 
 
 
 
 
If the input is the weighted sum of several signals, the 
response is the corresponding superposition (i.e., 
weighted sum) of the response to those signals. 

S a1x1[n]+ a2x2[n] a1y1[n]+ a2y2[n]
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Let’s explore acoustic transmission  
in this room 

Many thanks to Keith Winstein 
for his extensive work on the  
acoustic channel platform for 6.02 
and for today’s demo! 


