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* LTI channel models
* Superposed step responses; eye diagrams
* Convolution

* definition, properties

« causality, stability



Modeling Channel Behavior
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Transmission over a Channel

Signal x[n] from digitized symbols at transmitter
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The Baseband* Channel

channel input

VAN

Starting

channel output
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VeV

—> y[n]

point:

Try a linear, time-invariant (LTI) model!

Keith’s demo from last time suggests
this may not be unreasonable for the
acoustic channel in this room.

*From before the modulator to after the demodulator,
i.e., hiding the modulation/demodulation



Why So Eager for LTI?

* Lots of structure, mathematically tractable, rich basis for
analysis and design

 Good model for small perturbations from a constant
equilibrium point (for the same reason that the linear term
of a Taylor series is a good local description)

 Even when the overall system may be significantly nonlinear
and/or time varying, on short enough time scales the subsystems
or modules may often be well approximated as LTI, so LTI design
methods form a good starting point

Important to check LTI-based designs against more realistic
simulations and analysis before deploying!



Unit Sample Response

Unit sample signal
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Unit sample response

VaY

6[1’1]—)

—> h[l’l]

The unit sample response of a system S is the response of
the system to the unit sample input. We will typically
denote the unit sample response as h[n].



Unit Step Response

Similarly, the unit step response s[n|:

Unit step signal Unit step response
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u[n]—> S —> S[Il]




Time Invariant Systems

Let y[.] be the response of S to input x].]

If for all possible sequences x[n| and integers N

X[n-N]—f § —— y[n-N]

then system S is said to be time invariant (TI). A time
shift in the input sequence to S results in an identical
time shift of the output sequence.

In particular, for a TI system, a shifted unit sample
function 0[n — N] at the input generates an identically

shifted unit sample response hA[n— N] at the output.

Similarly, u[n — N| generates s[n—N].



Linear Systems

Let y,[.] be the response of S to an arbitrary input x,[.], and
V,|.] be the response to an arbitrary input x,|.]

If the response to linear combinations of these two inputs
equals the same linear combination of the respective
individual responses, then system S is said to be linear (L):

ax,[n]+bx,[n]— S — ay[n]l+by,[n]

More generally, if the input is the weighted sum of several
signals, the response of a linear system is the corresponding
superposition of the respective responses to those signals (i.e.,
the weighted sum of these responses, using the same weights
as in the input).



Relating h[n] and s[n] of an LTI System

Unit sample signal Unit sample response
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Relating h[n] and s[n] of an LTI System

Unit sample signal Unit sample response
AVAN VA
6[11]—) S — h[n]
Unit step signal Unit step response
AVAN VA

un— g — s[nj

oln]l=u[n]-ul[n-1] > h[n]=s[n]-s[n-1]

from which it follows that  §[n]= E hl k]

k=—OO

(assuming §[—%]=0, i.e., a causal LTI system)



Unit Step
Decomposition

5 % ————  “Rectangular-wave” digital
u[n] signaling waveforms, of the sort
STTTTTTITITITTITITTITITITITY] e have been considering, are
osfo . ..........] easily decomposed into time-
0 &% 1 % % — shifted, scaled unit steps --- each
—u[n—4] transition corresponds to another
wpe—r—7 771 shifted, scaled unit step.
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... SO the corresponding response is



... SO the corresponding response is

x[n] yln]

=u[n] > = s[n]
—uln-4] —s[n-4]

+uln-12] +s[n-12]

—u[n-24] —s[n—-24]

Note how we have invoked linearity and time invariance!



Transmission Over a Channel
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Response of Channel

Example of unit sample response h[n] and corresponding

unit step response s[n| for a causal channel model:
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Transmission Over a Channel
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Receiving the Response
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Faster Transmission
z[n| at 4 samples/bit
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Eye Diagrams

Using same h[n] as before and samples_per_bit=4

Eye diagram: h,[n], 4 samples/bit

Eye diagrams make it easy to find the worst-case
signaling conditions at the receiving end.



“Width” of Eye

Worst-case “1”

I |

Worst-case “0” \) “width” of eye
(as in “eye wide open”)

To maximize noise margins:
Pick the best sample point — widest point in the eye
Pick the best digitization threshold — half-way across width



Constructing the Eye Diagram

. Compute B, the number bits “covered” by h[n]. Let N =

samples/bit length of active portion of h[n]

N

+2

. Generate a test pattern that contains all possible combinations
of B bits — want all possible combinations of neighboring cells.
If B is big, randomly choose a large number of combinations.

. Transmit the test pattern over the channel (28BN samples)

. Instead of one long plot of y[n], plot the response as an eye
diagram:

a. break the plot up into short segments, each containing
KN samples, starting at sample 0, KN, 2KN, 3KN, ... (e.g.,
K=3)

b. plot all the short segments on top of each other



Choosing Samples/Bit
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Oops, no eye!

Given h[n|, you can use the eye diagram to pick the
number of samples transmitted for each bit (N):

Reduce N until you reach the noise margin you feel
is the minimum acceptable value.






From Unit Step Decomposition
to Unit Sample Decomposition ...
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Unit Sample
Decomposition

A discrete-time signal can be decomposed
into a sum of time-shifted, scaled unit
sample functions.

Example: in the figure, x[n| is the sum of
x[-2]0[n+2] + x[-1]0[n+1] + ... + X[2]0[n-2].

In general:

o0

x[n] = E x[k18[n—k]
k=—o0 \/\

For any particular index, only
one term of this sum is non-zero



Convolution!

If system S is both linear and time-invariant (LTI), then we can
use the unit sample response to predict the response to any

input waveform x[n]|:
Sum of shifted, scaled unit sample

responses, with the same scale factors

Sum of shifted, scaled unit sample functions
L N o
snl= Y dkloln-kl—> S —>)n]= Y xlkliln-k]
k=— k=—00

CONVOLUTION SUM

Indeed, the unit sample response h[n] completely characterizes
the LTI system S, so you often see

X[n]—s h[] > YyIn]




Notation, Notation!

Evaluating the convolution sum

0

ylnl= Y xlklhln~k]
k=—0o0
for all n defines the output signal y in terms of the input x and
unit-sample response h. Some constraints are needed to ensure
this infinite sum is well behaved, i.e., doesn’t “blow up” (we’ll
discuss this soon).

We use #* to denote convolution, and write y=x:h. We can then
write the value of y at time n, which is given by the above sum,

as y[ln]=(x*h)[n].



Notation, Notation!

Evaluating the convolution sum

0

ylnl="Y xlklhln-k]

k=—OO

for all n defines the output signal y in terms of the input x and
unit-sample response h. Some constraints are needed to ensure
this infinite sum is well behaved, i.e., doesn’t “blow up” (we’ll
discuss this soon).

We use * to denote convolution, and write y=xxh. We can thus
write the value of y at time n, which is given by the above sum,

as y[n]=(x*h)[n]

Be warned: you'll find people writing y[n]= x[n]*h[n] , where
the poor index n is doing triple duty. This is awful notation, but
a super-majority of engineering professors (including at MIT) will
inflict it on their students.



Channels as LTI Systems

Many transmission channels can be effectively modeled as
LTI systems. When modeling transmissions, there are few
simplifications we can make:

« We'll call the time transmissions start t=0; the signal before
the start is 0. So x[m| = O for m < O.

 Real-word channels are causal: the output at any time
depends on values of the input at only the present and
past times. So h[m] = 0 for m < O.

These two observations allow us to rework the convolution
sum when it’s used to describe transmission channels:

o)

yinl="Y xlklhln—k]="Y xlklhln - k}ﬂ x[klhln-k]="¥ xln - jlhLj]
k=—00 /\ﬁo k=0 /\/Fo

start at t=0 causal j=n-k



Properties of Convolution

(x*h)[n]= E x[k1h[n -k] = E W[mlx[n-m]

k:—OO nm=—00

The second equality above, which follows from the simple change
of variables n-k=m, establishes that convolution is commutative:

xkh=h%x

Convolution is associative:
hy # (hy % x) = (hy % hy)* x
Convolution is distributive:

(B, + 1y ) % x = (B % x) + (hy % x)



Stability

What ensures that the inf;nite sum

yinl="Y hlmlx[n-m]

nm=—0oo

1s well-behaved?

One important case: If the unit sample response is absolutely

summable, i.e., it
N Thim]l<

nm=—0co

and the input is bounded, i.e., | x[k]ls M < x

Under these conditions, the convolution sum is well-behaved,
and the output is guaranteed to be bounded.

The absolute summability of h|n] is necessary and sufficient
for this bounded-input bounded-output (BIBO) stability.



Series Interconnection of LTI Systems
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Parallel Interconnection of LTI Systems

y.(n]
> hy[.]
x[n] —— jD—W[n]
— el o]

y=y t+)y, =(h1*x)+(h2*x)=(hl+h2)*x

X[n] —  (h+h,)[] VIO




