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6.02 Fall 2011 
Lecture #11 

• LTI channel models 
• Superposed step responses; eye diagrams 
• Convolution  

•  definition, properties 
•  causality, stability 
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Modeling Channel Behavior 
codeword  
bits in 

codeword  
bits out 

101110101 DAC	  
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NOISY	  &	  DISTORTING	  	  ANALOG	  CHANNEL	  

modulate	  

101110101 demodulate	  
&	  filter	  
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symbols	  
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threshold	  

x[n] 

y[n] 
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Transmission over a Channel 
Signal x[n] from digitized symbols at transmitter 

Distorted noise-free signal y[n] at receiver 
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The Baseband* Channel 

S	  x[n] y[n] 

channel input channel output 

*From before the modulator to after the demodulator, 
i.e., hiding the modulation/demodulation  

Starting point:  
 
       Try a linear, time-invariant (LTI) model! 
 
                   Keith’s demo from last time suggests 

     this may not be unreasonable for the 
                   acoustic channel in this room. 
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Why So Eager for LTI? 

•  Lots of structure, mathematically tractable, rich basis for  
analysis and design 
 
•  Good model for small perturbations from a constant  
equilibrium point (for the same reason that the linear term 
of a Taylor series is a good local description) 
 
•  Even when the overall system may be significantly nonlinear 
and/or  time varying, on short enough time scales the subsystems  
or modules may often be well approximated as LTI, so LTI design 
methods form a good starting point 
 
Important to check LTI-based designs against more realistic  
simulations and analysis before deploying! 
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Unit Sample Response  

S	  δ[n] h[n] 

Unit sample signal Unit sample response 

The unit sample response of a system S is the response of 
the system to the unit sample input.  We will typically 
denote the unit sample response as h[n]. 
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Unit Step Response 

S	  u[n] s[n] 

Unit step signal Unit step response 

Similarly, the unit step response s[n]: 
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Let y[.] be the response of S to input x[.] 
 
If for all possible sequences x[n] and integers N 
 
 
 
 
then system S is said to be time invariant (TI).  A time 
shift in the input sequence to S results in an identical 
time shift of the output sequence. 
 
In particular, for a TI system, a shifted unit sample 
function              at the input generates an identically 
shifted unit sample response               at the output.  
 
Similarly,               generates               . 

![n! N ]
h[n! N ]

S	   y[n-N] x[n-N] 

Time Invariant Systems 

u[n! N ] s[n! N ]
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Linear Systems 
Let y1[.] be the response of S to an arbitrary input x1[.], and  
y2[.] be the response to an arbitrary input x2[.] 
 
If the response to linear combinations of these two inputs 
equals the same linear combination of the respective 
individual responses, then system S is said to be linear (L):  
 
 
 
 
 
More generally, if the input is the weighted sum of several 
signals, the response of a linear system is the corresponding 
superposition of the respective responses to those signals (i.e., 
the weighted sum of these responses, using the same weights 
as in the input). 

S	  ax1[n]+ bx2[n] ay1[n]+ by2[n]
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![n]= u[n]!u[n!1]

Relating h[n] and s[n] of an LTI System 

S	  u[n] s[n] 

Unit step signal Unit step response 

S	  δ[n] h[n] 

Unit sample signal Unit sample response 
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![n]= u[n]!u[n!1] h[n]= s[n]! s[n!1]

Relating h[n] and s[n] of an LTI System 

S	  u[n] s[n] 

Unit step signal Unit step response 

S	  δ[n] h[n] 

Unit sample signal Unit sample response 

from which it follows that 
 
(assuming                  , i.e., a causal LTI system)  

s[n]= h[k]
k=!"

n

#
s[!"]= 0
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Unit Step 
Decomposition 

“Rectangular-wave” digital 
signaling waveforms, of the sort 
we have been considering, are 
easily decomposed into time-
shifted, scaled unit steps --- each 
transition corresponds to another 
shifted, scaled unit step. 
 
e.g., if x[n] is the transmission of 
1001110 using 4 samples/bit: 

x[n]

= u[n]

!u[n! 4]

+u[n!12]

!u[n! 24]
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… so the corresponding response is 
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… so the corresponding response is 

y[n]

= s[n]

! s[n! 4]

+ s[n!12]

! s[n! 24]

x[n]

= u[n]

!u[n! 4]

+u[n!12]

!u[n! 24]

Note how we have invoked linearity and time invariance! 
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  Transmission Over a Channel 

Bits	  to	  
volts	  

1001110101 y[n] 

CAUSAL	  
CHANNEL	  
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Response of Channel 
Example of unit sample response h[n] and corresponding 
unit step response s[n] for a causal channel model: 

h[n] s[n] 
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  Transmission Over a Channel 
Bits	  to	  
volts	  

1001110101 y[n] 

CAUSAL	  
CHANNEL	  

INTERSYMBOL	  
INTERFERENCE	  	  
(ISI)	  
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Receiving the Response 

Digitization threshold = 0.5V 
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Faster Transmission 

Noise margin?  0.5 － y[28] 
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Eye Diagrams 
Using same h[n] as before and samples_per_bit=4 

000 100 010 110 001 101 011 111 

Eye diagrams make it easy to find the worst-case 
signaling conditions at the receiving end. 
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“Width” of Eye 

“width” of eye 
(as in “eye wide open”) 

Worst-case “1” 

Worst-case “0” 

To maximize noise margins: 
  Pick the best sample point → widest point in the eye 
  Pick the best digitization threshold → half-way across width 
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Constructing the Eye Diagram 
 
1.  Compute B, the number bits “covered” by h[n].  Let N = 

samples/bit 
 
 

2.  Generate a test pattern that contains all possible combinations 
of B bits – want all possible combinations of neighboring cells.  
If B is big, randomly choose a large number of combinations. 
 

3.  Transmit the test pattern over the channel (2BBN samples) 
 

4.  Instead of one long plot of y[n], plot the response as an eye 
diagram: 
a.  break the plot up into short segments, each containing 

KN samples, starting at sample 0, KN, 2KN, 3KN, … (e.g., 
K=3) 

b.  plot all the short segments on top of each other 

B = length of active portion of h[n]
N

!

"!
#

$#
+ 2
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Choosing Samples/Bit 

Given h[n], you can use the eye diagram to pick the 
number of samples transmitted for each bit (N): 
 
Reduce N until you reach the noise margin you feel 
is the minimum acceptable value. 

Oops, no eye! 
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Example: “ringing” channel 
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From Unit Step Decomposition  
to Unit Sample Decomposition … 
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Unit Sample 
Decomposition 

A discrete-time signal can be decomposed 
into a sum of time-shifted, scaled unit 
sample functions. 
 
Example: in the figure, x[n] is the sum of  
 
x[-2]δ[n+2] + x[-1]δ[n+1] + … + x[2]δ[n-2]. 
 
In general: 

x[n]= x[k]![n! k]
k=!"

"

#

For any particular index, only 
one term of this sum is non-zero 
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If system S is both linear and time-invariant (LTI), then we can 
use the unit sample response to predict the response to any 
input waveform x[n]: 
 
 
 
 
 
 
 
Indeed, the unit sample response h[n] completely characterizes 
the LTI system S, so you often see 

S	  x[n]= x[k]![n! k]
k=!"

"

# y[n]= x[k]h[n! k]
k=!"

"

#

Sum of shifted, scaled unit sample functions 

Sum of shifted, scaled unit sample 
responses, with the same scale factors 

Convolution! 

h[.]	  x[n] y[n] 

CONVOLUTION SUM 
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Evaluating the convolution sum 
 
 
 
for all n defines the output signal y in terms of the input x and 
unit-sample response h. Some constraints are needed to ensure 
this infinite sum is well behaved, i.e., doesn’t “blow up” (we’ll 
discuss this soon). 
 
We use     to denote convolution, and write y=x  h. We can then 
write the value of y at time n, which is given by the above sum, 
as                          .                                                                   
 
 

y[n]= x[k]h[n! k]
k=!"

"

#

Notation, Notation! 

! !

y[n]= (x!h)[n]
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Evaluating the convolution sum 
 
 
 
for all n defines the output signal y in terms of the input x and 
unit-sample response h. Some constraints are needed to ensure 
this infinite sum is well behaved, i.e., doesn’t “blow up” (we’ll 
discuss this soon). 
 
We use     to denote convolution, and write y=x  h. We can thus 
write the value of y at time n, which is given by the above sum, 
as 
 
Be warned: you’ll find people writing                            , where 
the poor index n is doing triple duty. This is awful notation, but 
a super-majority of engineering professors (including at MIT) will 
inflict it on their students.  
 
                                   
 
   
 

y[n]= x[k]h[n! k]
k=!"

"

#

! !

y[n]= (x!h)[n]

y[n]= x[n]!h[n]

Notation, Notation! 
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Channels as LTI Systems 
Many transmission channels can be effectively modeled as 
LTI systems.  When modeling transmissions, there are few 
simplifications we can make: 
 

y[n]= x[k]h[n! k]
k=!"

"

# = x[k]h[n! k]
k=0

"

# = x[k]h[n! k]
k=0

n

# = x[n! j]h[ j]
j=0

n

#

These two observations allow us to rework the convolution 
sum when it’s used to describe transmission channels: 

 
•  We’ll call the time transmissions start t=0; the signal before 

the start is 0.  So x[m] = 0 for m < 0. 
  

•  Real-word channels are causal: the output at any time 
depends on values of the input at only the present and 
past times.  So h[m] = 0 for m < 0. 

j=n-k start at t=0 causal 
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Properties of Convolution 

(x!h)[n]" x[k]h[n# k]
k=#$

$

% = h[m]x[n#m]
m=#$

$

%

The second equality above, which follows from the simple change 
of variables n-k=m, establishes that convolution is commutative: 
 
 
Convolution is associative: 
 
 
 
Convolution is distributive: 

x!h = h! x

h2 ! (h1 ! x) = h2 !h1( )! x

h1 + h2( )! x = (h1 ! x)+ (h2 ! x)
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Stability 

y[n]= h[m]x[n!m]
m=!"

"

#
What ensures that the infinite sum 
 
 
is well-behaved? 
 
One important case:  If the unit sample response is absolutely 
summable, i.e., 
 
 
and the input is bounded, i.e.,  
 

| h[m]
m=!"

"

# |<"

| x[k] |!M <"

Under these conditions, the convolution sum is well-behaved, 
and the output is guaranteed to be bounded. 
 
The absolute summability of h[n] is necessary and sufficient 
for this bounded-input bounded-output (BIBO) stability. 
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Series Interconnection of LTI Systems 

h1[.]	  x[n] h2[.]	   y[n] 

y = h2 !w = h2 ! h1 ! x( ) = h2 !h1( )! x

(h2∗h1)[.]	  x[n] y[n] 

w[n] 

(h1∗h2)[.]	  x[n] y[n] 

h2[.]	  x[n] h1[.]	   y[n] 
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Parallel Interconnection of LTI Systems 

h1[.]	  
x[n] 

y1[n] 

h2[.]	  

+

y2[n] 

y[n] 

(h1+h2)[.]	  x[n] y[n] 

y = y1 + y2 = (h1 ! x)+ (h2 ! x) = h1 + h2( )! x


