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•  Alternative ways to look at convolution 
•  Frequency response  
•  Filters 
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From last lecture: If system S is both linear and time-invariant 
(LTI), then we can use the unit sample response h[n] to predict 
the response to any input waveform x[n]: 
 
 
 
 
 
 
 
Indeed, the unit sample response h[n] completely characterizes 
the LTI system S, so you often see 

S x[n]= x[k]![n! k]
k=!"

"

# y[n]= x[k]h[n! k]
k=!"

"

#

Sum of shifted, scaled unit sample functions 
Sum of shifted, scaled unit sample 
responses, with the same scale factors 

Convolution 

CONVOLUTION SUM 

h[.] x[n] y[n] 
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Unit Sample Response of a  
Scale-&-Delay System 

S x[n] y[n]=Ax[n-D] 

If S is a system that scales the input by A and delays it by D 
time steps (negative ‘delay’ D = advance), is the system 
 

       time-invariant?  
 

       linear? 

                                            Yes! 
 
                                            Yes! 
 
Unit sample response is h[n]=Aδ[n-D] 

General unit sample response 
 
      h[n]=… + h[-1]δ[n+1] + h[0]δ[n] + h[1]δ[n-1]+… 	

	

for an LTI system can be thought of as resulting from  
many scale-&-delays in parallel 
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y[n]= h[m]x[n!m]
m=!"

"

#

h[.] x[n]= x[k]![n! k]
k=!"

"

# y[n]= x[k]h[n! k]
k=!"

"

#

A Complementary View of Convolution 

h[.]=…+h[-1]δ[n+1]+h[0]δ[n]+h[1]δ[n-1]+…      x[n]     y[n] 

So instead of the picture: 

we can consider the picture: 

from which we get  

(To those who have an eye for these things, my apologies  
for the varied math font --- too hard to keep uniform!) 
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(side by side) 
y[n]=

(x!h)[n]= x[k]h[n" k]
k="#

#

$ = h[m]x[n"m]= (h! x)[n ]
m="#

#

$

Input term x[0] at 
time 0 launches  
scaled unit sample 
response x[0]h[n] at  
output 
 
Input term x[k] at 
time k launches  
scaled shifted unit  
sample response  
x[k]h[n-k] at output  

Unit sample response 
term h[0] at time 0  
contributes scaled input 
h[0]x[n] to output 
 
 
Unit sample response  
term h[m] at time m  
contributes scaled shifted 
input h[m]x[n-m]  
to output  
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To Convolve (but not to “Convolute”!) 

A simple graphical implementation: 
 
Plot x[.] and h[.] as a function of the dummy index  
(k or m above) 
 
Flip (i.e., reverse) one signal in time,  
slide it right by n (slide left if n is –ve), take the 
dot.product with the other. 
 
This yields the value of the convolution at  
the single time n.  
 
‘flip one  & slide by n …. dot.product with the other’  
 

x[k]h[n! k]
k=!"

"

# = h[m]x[n!m]
m=!"

"

#
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“Deconvolving” Output of 
Channel with Echo 

Channel, 
   h1[.] 

Receiver 
filter,  h2[.] 

x[n] y[n] z[n] 

Suppose channel is LTI with  
 

 h1[n]=δ[n]+0.8δ[n-1] 
 
 
Find h2[n] such that z[n]=x[n] 

Good exercise in applying  
Flip/Slide/Dot.Product 

h2*h1[n]=δ[n] 
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“Deconvolving” Output of 
Channel with Echo 

Channel, 
   h1[.] 

Receiver 
filter,  h2[.] 

x[n] y[n] 
   + 
 
w[n] 

z[n]+v[n] 

Even if channel was well modeled as LTI and h1[n]  
was known, noise on the channel can greatly degrade 
the result, so this is usually not practical.  
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Time now for a Frequency-Domain Story 
 

in which  
convolution  

is transformed to  
multiplication, 

and other  
good things 

happen 
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A First Step 

Do periodic inputs to an LTI system, i.e., x[n] such that  
 
       x[n+P] = x[n] for all n, some fixed P 
 
(with P usually picked to be the smallest positive integer 
for which this is true) yield periodic outputs? If so, of  
period P? 

Yes! --- use Flip/Slide/Dot.Product to see  
this easily: sliding by P gives the same picture 
back again, hence the same output value. 
 
Alternate argument: Since the system is TI, using 
input x delayed by P should yield y delayed by P. But 
x delayed by P is x again, so y delayed by P must be y. 
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But much more is true for  
Sinusoidal Inputs to LTI Systems 

Sinusoidal inputs, i.e., 
 

    x[n] = cos(Ωn + θ) 
 
yield sinusoidal outputs at the same ‘frequency’ Ω rads. 

And observe that such inputs are not even periodic 
in general!  
 
Periodic if and only if 2π/Ω is rational, =P/Q for some  
integers P(>0), Q. The smallest such P is the period.  
 
Nevertheless, we often refer to 2π/Ω as the ‘period’ of this  
sinusoid, whether or not it is a periodic discrete-time 
sequence. This is the period of an underlying  
continuous-time signal.  
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Examples 

cos(3πn/4) has frequency 3π/4 rad, and period 8; 
shifting by integer multiples of 8 yields the same 
sequence back again, and no integer smaller than  
8 accomplishes this. 

cos(3n/4) has frequency ¾ rad, and is not periodic as  
a DT sequence because 8π/3 is irrational, but we could 
still refer to 8π/3 as its ‘period’, because we can 
think of the sequence as arising from sampling the  
periodic continuous-time signal cos(3t/4) at integer t.  
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Complex Exponentials and LTI Systems 

A very important property of LTI systems or channels: 
 

If the input x[n] is a sinusoid of a given amplitude, 
frequency and phase, the response will be a sinusoid at the 
same frequency, although the amplitude and phase may be 
altered.  The change in amplitude and phase will, in 
general, depend on the frequency of the input. 

 
Let’s prove this to be true … but use complex exponentials 
instead, for clean derivations that take care of sines and  
cosines (or sinusoids of arbitrary phase) simultaneously. 

h[n] 
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Complex Exponentials 
A complex exponential is a complex-valued function of a 
single argument – an angle measured in radians.  Euler’s 
formula shows the relation between complex exponentials 
and our usual trig functions: 

e j! = cos(! )+ j sin(! )

cos(! ) = 1
2
e j! + 1

2
e! j! sin(! ) = 1

2 j
e j! ! 1

2 j
e! j!

In the complex plane,                                   is a 
point on the unit circle, at an angle of ϕ with respect 
to the positive real axis. Increasing ϕ by 2π brings you 
back to the same point! So any function of      only  
needs to be studied for ϕ in [-π, π] .     

e j! = cos(! )+ j sin(! )

e j!
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Useful Properties of ejφ 

When φ = 0: 

e j0 =1

When φ = ±π: 

e j! = e! j! = !1
e j!n = e! j!n = !1( )n

(More properties later) 
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Frequency Response 

Using the convolution sum we can compute the system’s 
response to a complex exponential (of frequency Ω) as input: 

h[.] AejΩn y[n] 

y[n]= h[m]x[n!m]
m
"

= h[m]Ae j#(n!m)
m
"

= h[m]e! j#m
m
"
$

%
&

'

(
)Ae j#n

= H (#) * x[n]
where we’ve defined the frequency response of the system as 

H (!) " h[m]e# j!m
m
$
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This complex function of Ω repeats periodically on the 
frequency (Ω) axis,  with period 2π, because the input 
is the same for Ω that differ by integer multiples of 2π.	

	

So only the interval Ω in [-π,π] is of interest! 
 
Ω  = 0, i.e., AejΩn = A, corresponds to a constant (or “DC”, which  
stands for “direct current”, but now just means constant) input,  
so H(0) is the “DC gain” of the system, i.e., gain for constant inputs. 

Ω  = π or ‒π, i.e.,  AejΩn=(–1)nA, corresponds to the  
highest-frequency variation possible for a discrete-time 
signal, so H(π)=H(–π) is the high-frequency gain of the system. 
 
The notation               is also used for the frequency response, 
and has the virtue of making the 2π periodicity evident, plus 
other advantages when being compared to transforms we will  
not be using in 6.02. So let’s try and stick to simpler notation.   

 
 

AejΩn 

H (e j!)

A little elaboration on                                  
H (!) " h[m]e# j!m

m
$More on                   
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Back to Sinusoidal Inputs 

cos(Ω0n) H(Ω) |H(Ω0)|cos(Ω0n + <H(Ω0)) 

This is IMPORTANT 

Invoking the result for complex exponential inputs, it is 
easy to deduce what an LTI system does to sinusoidal inputs:  
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Example h[n] and H(Ω)  
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Frequency Response of “Moving Average” 
Filters 


