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6.02 Fall 2011 
Lecture #13 

•  More on frequency response 
•  Filters 
•  Determining spectral content of a  
    periodic signal: DT Fourier Series  
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Sinusoidal Inputs to LTI Systems 

Sinusoidal inputs, i.e., 
 

    x[n] = cos(Ωn + θ) 
 
yield sinusoidal outputs at the same ‘frequency’ Ω rads. 

h[n] 
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Complex Exponentials 

e j! = cos(! )+ j sin(! )

cos(! ) = 1
2
e j! + 1

2
e! j! sin(! ) = 1

2 j
e j! ! 1

2 j
e! j!

In the complex plane,                                   is a 
point on the unit circle, at an angle of ϕ with respect 
to the positive real axis. Increasing ϕ by 2π brings you 
back to the same point! So any function of      only  
needs to be studied for ϕ in [-π, π] .     

e j! = cos(! )+ j sin(! )

e j!
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Complex Exponentials as 
“Eigenfunctions” of LTI System  

h[.] x[n]=ejΩn y[n]=H(Ω)ejΩn 
 

H (!) " h[m]e# j!m
m
$

= h[m]cos(!m)# j h[m]sin(!m)
m
$

m
$

Eigenfunction: Undergoes only scaling -- by H(Ω) in this case  

This is an infinite sum in general, but is well behaved if 
h[.] is absolutely summable, i.e., if the system is stable.  
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Suppose channel is LTI with  
 

 h1[n]=δ[n]+0.8δ[n-1] 

          So: 
                   |H1(Ω)| = [1.64 + 1.6cos(Ω)]1/2      EVEN function of  Ω;	

 
                   <H1(Ω) = arctan [–(0.8sin(Ω)/[1 + 0.8cos(Ω)]      ODD .          

Example: “Deconvolving” Output of 
Channel with Echo 

Channel, 
   h1[.] 

Receiver 
filter,  h2[.] 

x[n] y[n] z[n] 

H1(Ω) = ?? = 
 
= 1+ 0.8e–jΩ = 1 + 0.8cos(Ω) – j0.8sin(Ω)   

h1[m]e
! j"m

m
#

Sketch these!! 
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From Complex Exponentials to 
Sinusoids 

cos(Ωn)=(ejΩn+e-jΩn))/2 
 

cos(Ω0n) H(Ω) |H(Ω0)|cos(Ω0n + <H(Ω0)) 

So response to this cosine input is 

(H(Ω)ejΩn+H(-Ω)e-jΩn))/2 = Real part of H(Ω)ejΩn 
 

                                           = Real part of |H(Ω)|ej(Ωn+<H(Ω))                                
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Repeats periodically on the frequency (Ω) axis,  with period 2π,  
because the input ejΩn is the same for Ω that differ by 
integer multiples of 2π. So only the interval Ω in [-π,π] is of interest! 
 

                Properties of H(Ω)                      
A little elaboration on                                  
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Repeats periodically on the frequency (Ω) axis,  with period 2π,  
because the input ejΩn is the same for Ω that differ by 
integer multiples of 2π. So only the interval Ω in [-π,π] is of interest! 
 
Ω  = 0, i.e., ejΩn = 1, corresponds to a constant (or “DC”, which  
stands for “direct current”, but now just means constant) input,  
so H(0) is the “DC gain” of the system, i.e., gain for constant inputs. 
                               
                            H(0) = ∑ h[m]     --- show this from the definition!                             
 
 

                Properties of H(Ω)                      
A little elaboration on                                  
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Repeats periodically on the frequency (Ω) axis,  with period 2π,  
because the input ejΩn is the same for Ω that differ by 
integer multiples of 2π. So only the interval Ω in [-π,π] is of interest! 
 
Ω  = 0, i.e., ejΩn = 1, corresponds to a constant (or “DC”, which  
stands for “direct current”, but now just means constant) input,  
so H(0) is the “DC gain” of the system, i.e., gain for constant inputs. 
                               
                            H(0) = ∑ h[m]     --- show this from the definition!                             
 
Ω  = π or ‒π, i.e.,  AejΩn=(-1)nA, corresponds to the  
highest-frequency variation possible for a discrete-time 
signal, so H(π)=H(-π) is the high-frequency gain of the system. 
 
                           H(π) = ∑ (-1)m h[m]   --- show from definition! 
 
 

                Properties of H(Ω)                      
A little elaboration on                                  
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Repeats periodically on the frequency (Ω) axis,  with period 2π,  
because the input ejΩn is the same for Ω that differ by 
integer multiples of 2π. So only the interval Ω in [-π,π] is of interest! 
 
Ω  = 0, i.e., ejΩn = 1, corresponds to a constant (or “DC”, which  
stands for “direct current”, but now just means constant) input,  
so H(0) is the “DC gain” of the system, i.e., gain for constant inputs. 
                               
                            H(0) = ∑ h[m]     --- show this from the definition!                             
 
Ω  = π or ‒π, i.e.,  AejΩn=(-1)nA, corresponds to the  
highest-frequency variation possible for a discrete-time 
signal, so H(π)=H(-π) is the high-frequency gain of the system. 
 
                           H(π) = ∑ (-1)m h[m]   --- show from definition! 
For real h[n]: 
             Real part of H(Ω) & magnitude are EVEN functions of Ω. 
             Imaginary part & phase are ODD functions of Ω. 
 
 

                Properties of H(Ω)                      
A little elaboration on                                  
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Examples: h[n], |H(Ω)| and <H(Ω)  



6.02 Fall 2011 Lecture 13, Slide #12 

Frequency Response of “Moving Average” 
Filters 
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H(Ω) with Zeros 

H (!) = h[m]e" j!m
m
# = h[0]e" j!0 + h[1]e" j!1 + h[2]e" j!2

= h[0]+ h[1](e" j!)+ h[2](e" j!)2

(e! j" ! e! j! )(e! j" ! e j! )
= (e! j")2 ! (e j! + e! j! )(e! j")+ e j!e! j!

=1! 2cos(! )(e! j")+ (e! j")2

Hmm.  A quadratic equation with two roots at  Ω=±φ: 

Matching terms in the two equations, we see that this LTI 
system would have a frequency response that went to zero at 
±φ if 

 h[0]=1,   h[1]=–2cos(φ)  and  h[2] = 1. 
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Series Interconnection of LTI Systems 

h1[.] x[n] h2[.] y[n] 

(h2∗h1)[.] x[n] y[n] 

From Lecture 11: 

H1(Ω) x[n] H2(Ω) y[n] 

In the frequency domain (i.e., thinking about input-to-output 
frequency response): 

H(Ω)=H2(Ω)H1(Ω) 

i.e., convolution in time  
has become multiplication  
in frequency! 
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A 10-cent Low-pass Filter 
Suppose we wanted a low-pass filter with a cutoff frequency of π/4 

Hπ/4(Ω) x[n] Hπ/2(Ω) H3π/4(Ω) Hπ(Ω) y[n] 
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The $4.99 version, h[n] and H(Ω) 
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H(Ω) and h[n] for some Useful Filters 
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h[n] and H(Ω) for some Idealized Channels 
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A Frequency-Domain view of Deconvolution 

Channel, 
   H1(Ω) 

Receiver 
filter, H2(Ω) 
 

x[n] y[n] z[n] 

Given H1(Ω), what should H2(Ω) be, to get z[n]=x[n]?   

H2(Ω)=1/H1(Ω)      “Inverse filter”  

= (1/|H1(Ω)|). exp{–j<H1(Ω)}  

Inverse filter at receiver does very badly in the presence of noise  
that adds to y[n]:  
     filter has high gain for noise precisely at frequencies where  
     channel gain|H1(Ω)| is low (and channel output is weak)! 

Noise w[n] 
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Enough of sinusoidal inputs already! 
 

What about other periodic inputs? 
 
 

We’ll start with strictly periodic inputs: 
 
              x[n+P] = x[n] for all n 
 
and some P>0.  
 
 
(Caution: N is usually used instead of P –  
looks better, but gets confused with n when 
spoken! You will find N in the labs, rather  
than P; not a big deal, but stay alert.)  
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Key claim in (mostly!) words: 
Any periodic DT signal of period P  

can be written as  
a weighted combination* of P complex exponentials  

whose frequencies are  
consecutive multiples of the fundamental frequency 2π/P. 

 
This is called the 

Discrete-time (DT) or Discrete Fourier Series 
or discrete spectral representation. 

     

* generally with complex weights 

(We’ll explore the form and implications now, and defer 
the proof of the claim.)  
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Discrete-time Fourier Series 

x[n]= Ak
k= P
! e

jk 2!
P

"

#
$

%

&
'n

=
1
P

Xk
k= P
! e jk(1n

If x[n] is periodic with period P (convenient to assume P is even, 
so P/2 is integer, but odd P can be handled too), then x[n] can be 
expressed as the sum of scaled periodic complex exponentials: 

Complex exponential 
with period P and 
fundamental frequency 
2π/P = Ω1. 

k ranges over any P consecutive integers.  Common choices: 
•  k for 0 to P–1 ; 0 ≤ kΩ1 ≤ 2π-Ω1 
•  k for –(P/2) to (P/2)–1 for even P ; -π ≤ kΩ1 ≤ π–Ω1 
•  k symmetrically out from 0 for odd P ; –π+(Ω1/2)≤ kΩ1 ≤ π–(Ω1/2) 

With the notation Xk=PAk we 
get an alternate (and often 
used) normalization. 
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Yk =  H (!k )Xk

Immediate Consequence: 

H(Ω) x[n]= Ake
j!kn

k= P
" y[n]= H (!k )Ake

j!kn

k= P
"

i.e., the frequency response tells us how the system will 
affect the spectral components in the periodic input. We 
know the output is periodic, and must have its own Fourier 
series, with coefficients Bk. So evidently 

Bk =  H (!k )Ak
are the spectral coefficients for y[n]. If we use the alternate  
normalization, Xk=AkP and Yk=BkP, then similarly 

We write Ωk=kΩ1=k(2π/P),  
to further simplify the notation 
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How do we get the Fourier Coefficients? 

•  x[n] and Ak are both periodic with period P 

•  2π/P radians/sample is the fundamental frequency.  Complex 
exponentials in Fourier series equations have frequencies which 
are some harmonic of 2π/P 

•  If x[n] is real, A－k = Ak
* (i.e., they are complex conjugates) 

•  A0 is the average of the x[n] over one period 

•  AP/2 (when P is even) is the average of (–1)nx[n] over one period 

x[n]= Ak
k= P
! e j"kn

Ak =
1
P

x[n] e# j"kn

n= P
!

Synthesis equation 

Analysis equation 

More on this 
next lecture 
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x[n]= sin(r 2!
P
n)

Let’s do it “by inspection”.  First 
rewrite x[n]: 

x[n]= 1
2 j
e
jr2!
P
n
!
1
2 j
e
j (!r )2!

P
n

Now x[n] is a sum of complex 
exponentials and we can determine 
the Ak directly from the equation: 

Ar =
1
2 j

= !
j
2

A!r = !
1
2 j

=
j
2

Ak = 0   otherwise P is odd here, so the end points  
of the frequency scale are at  
±(π– (π/P)), not ±π. 
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x[n]=1+ 2cos(32!
11

n)!3sin(5 2!
11

n)

Again, by inspection: since the cos 
and sin are at different frequencies, 
we can analyze them separately. 
 
A0 = average value = 1 
 
A±3 = 2(1/2) = 1       [from cos term] 
 
A-5 = –3(j/2) = –1.5j  [from sin term] 
A5  = –3(–j/2) = 1.5j  
 
Ak = 0   otherwise 

Again, P is odd here, so the end points  
of the frequency scale are at  
±(π– (π/P)), not ±π. 
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Spectrum of Digital Transmissions 
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Effect of Band-limiting a Transmission 
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How Low Can We Go? 

7 samples/bit → 14 samples/period → k=(N/14)=(196/14)=14 


