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6.02 Fall 2011 
Lecture #14 

•  Review+more on frequency response  
•  Review+more on DT Fourier Series (DTFS) 
•  Using the DTFS for finite-duration signals  
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h[.] x[n]=ejΩn y[n]=H(Ω)ejΩn 
 

Exponentials are special for LTI systems (which comprise scaling 
and DT time-shifting operations on an input) because time-shifting 
an exponential yields a scaled version of the same exponential. 

Complex Exponentials through LTI Systems  
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=C(!)# jS(!) = H (!) .exp{ j < H (!)}

An infinite sum in general, but well behaved if h[.] is absolutely 
summable, i.e., if the system is stable --- our standing assumption.  

FREQUENCY  
RESPONSE 
(definition) 
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From Complex Exponentials to Sinusoids 

cos(Ωn)=(ejΩn+e-jΩn))/2 
 

Acos(Ω0n+Ø0) H(Ω) |H(Ω0)|Acos(Ω0n+Ø0+<H(Ω0)) 

So response to a cosine input is: 
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(i) H(Ω) repeats periodically on the frequency (Ω) axis,  with period 2π 
(because the input ejΩn is the same for Ω that differ by integer  
multiples of 2π, so the corresponding output is the same). 	

	


  So only the interval Ω in [-π,π] is of interest!  
	
 	
Ω=0 is lowest frequency, namely constant 1 or “DC”.	

	
 	
Ω=±π is highest frequency, namely (–l)n. 

 
 
 
 

    Key Properties of Frequency Response                      
A little elaboration on                                  

(ii) For real h[n]: 
 
             Real part of H(Ω) & magnitude are EVEN functions of Ω. 
 
             Imaginary part & phase are ODD functions of Ω. 
 

(iii) For real and even h[n] = h[–n],    H(Ω) is purely real. 
      For real and odd h[n] = –h[–n],   H(Ω) is purely imaginary. 
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Exercise: Frequency response of h[n-D] 

Given an LTI system with unit sample response h[n]  
and associated frequency response H(Ω),  
 
determine the frequency response HD(Ω) of an LTI 
system whose unit sample response is  
 
                          hD[n] = h[n-D]. 
 
 

Answer:             HD(Ω) = exp{-jΩD}.Η(Ω)	

	

	

so :             |HD(Ω)| = |Η(Ω)| ,              i.e., magnitude unchanged	


                  <HD(Ω) = -ΩD + <Η(Ω) , i.e., linear phase term added	
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e.g.: Approximating an ideal lowpass filter 

–300                0                 300 
                                           n 

   h[n] H[Ω] 

–π               0                 π 
                                       Ω 

Idea: shift h[n] right to get  
causal LTI system. 
Will the result still be a  
lowpass filter? 

Not  
causal 
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Causal approximation to ideal lowpass filter 

0               300                600 
                                        n 

   hC[n]= h[n-300] |HC[Ω]| 

–π               0                 π 
                                       Ω 

Determine <HC(Ω) 
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h[n]= 1
2!

H (!)e j!n
<2!>
" d!

H (!) = h[m]e" j!m
m
#

Multiply both sides by          and integrate over a  
(contiguous) 2π interval. Only one term survives! 

e j!n

Determining h[n] from H(Ω) 

H (!)e j!n
<2!>
" d! = h[m]e# j!(m#n)

m
$

<2!>
" d!

= 2! %h[n]
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Design ideal lowpass filter with cutoff 
frequency ΩC and H(Ω)=1 in passband 

=
1
2!

1!e j"n
#"C

"C

$ d"

=
sin("Cn)
!n

, n % 0

="C /! , n = 0

h[n]= 1
2!

H (!)e j!n
<2!>
" d!

    

DT “sinc” function 
(extends to ±∞ in time, 	

falls off only as 1/n))  
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What about other non-sinusoidal  
periodic inputs? 

Any strictly periodic DT signal of period P  
 

x[n+P]=x[n] for all n 
  

e.g., 6.sin((2πn/P)+0.17) + 4.cos(3(2πn/P)+0.82) 
 

can be written as  
a weighted combination (generally with complex weights) 

of P complex exponentials  
 

whose frequencies are  
consecutive integer multiples of the fundamental frequency 2π/P=Ω1 

(so each exponential term has period P) 
 

This is the 
Discrete-Time Fourier Series (DTFS) 
or discrete spectral representation. 
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Discrete-Time Fourier Series (DTFS) 

x[n]= Ak
k= P
! e jk"1n

If x[n] is periodic with period P (convenient to assume P is even, so 
P/2 is integer, but odd P can be handled too), it can be expressed 
as the sum of P “spectral components” --- scaled complex 
exponentials of period P: Complex exponentials 

with fundamental 
frequency 2π/P = Ω1. 
Frequency of term k is 
Ωk=kΩ1 . 

With the notation  
Ak=Xk/P, we get an  
alternate (and  
often used)  
normalization. 

=
1
P

Xk
k= P
! e jk"1n

k ranges over any P consecutive integers.  Common choices: 
•  k for 0 to P–1 ; 0 ≤ kΩ1 ≤ 2π-Ω1 
•  k for –(P/2) to (P/2)–1 for even P ; –π ≤ kΩ1 ≤ π–Ω1 
•  k symmetrically out from 0 for odd P ; –π+(Ω1/2)≤ kΩ1 ≤ π–(Ω1/2) 
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Where do the Ωk live?  
e.g., for P=6 (even) 

–π π 0 

Ω0	
 Ω1	
 Ω2	
 Ω3	
Ω-3	
 Ω-2	
 Ω-1	


exp(jΩ0)	


exp(jΩ-1)	


exp(jΩ2)	


 exp(jΩ3)	

= exp(jΩ-3) 

exp(jΩ1)	


exp(jΩ-2)	


. 1 –1 

j 

–j 
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Where do the Ωk live?  
e.g., for P=3 (odd) 

–π π 0 

Ω0	
 Ω1	
Ω-1	


exp(jΩ0)	


exp(jΩ1)	


exp(jΩ-1)	


. 1 –1 

j 

–j 
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Yk =  H (!k )Xk

Consequence for Periodic Input to  
LTI System 

H(Ω) 
x[n]= Ake

j!kn

k= P
" y[n]= H (!k )Ake

j!kn

k= P
"

i.e., the frequency response tells us how the system will 
affect the spectral components in the periodic input. We 
know the output is periodic, and must have its own Fourier 
series, with coefficients Bk. So evidently 

Bk =  H (!k )Ak
are the spectral coefficients for y[n]. If we use the alternate  
normalization, Xk=AkP and Yk=BkP, then similarly 

We write Ωk=kΩ1=k(2π/P),    to further  
simplify the notation; so Ω–k = –Ωk  . 
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Determining the Fourier Series Coefficients 

x[n]= Ak
k= P
! e j"kn

Xk = AkP = x[n] e# j"kn

n= P
!

Synthesis equation 

Analysis equation 

Parenthetical remark: compare with 

h[n]= 1
2!

H (!)e j!n
<2!>
" d!

H (!) = h[n]e" j!n
n
#
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Derivation of equation for Ak  

x[n]= Am
m= P
! e j"mn

Start with: 

Multiply both sides by         and sum over P terms: 

x[n]e! j"kn

n= P
# = Am

m= P
# e j"mne! j"kn

n= P
#

= Am e j m!k( )"1n

n= P
#

m= P
#

= AkP

Ak =
1
P

x[n]
n= P
! e" j#kn

= 0 if m-k ≠ 0, and  
= P otherwise 

e! j"kn
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DTFS Properties 

•  x[n] and Ak are both periodic with period P 

•  If x[n] is real, A－k = Ak
* (i.e., they are complex conjugates) 

•  A0 is the average of the x[n] over one period 

•  AP/2 (for even P) is the average of (–1)nx[n] over one period 

•  It takes P numbers to specify this periodic x[n], and it takes     
P numbers to specify its Fourier series coefficients    

Ak =
1
P

x[n]
n= P
! e" j#knx[n]= Ak

k= P
! e j"kn
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x[n]= sin(r 2!
P
n)

Let’s do it “by inspection”.  First 
rewrite x[n]: 

x[n]= 1
2 j
e
jr2!
P
n
!
1
2 j
e
j (!r )2!

P
n

Now x[n] is a sum of complex 
exponentials and we can determine 
the Ak directly from the equation: 

Ar =
1
2 j

= !
j
2

A!r = !
1
2 j

=
j
2

Ak = 0   otherwise P is odd here (=11), so the end  
points of the frequency scale  
are at ±(π– (π/P)), not ±π. 
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x[n]=1+ 2cos(32!
11

n)!3sin(5 2!
11

n)

Again, by inspection: since the cos 
and sin are at different frequencies, 
we can analyze them separately. 
 
A0 = average value = 1 
 
A±3 = 2(1/2) = 1       [from cos term] 
 
A-5 = –3(j/2) = –1.5j  [from sin term] 
A5  = –3(–j/2) = 1.5j  
 
Ak = 0   otherwise 

Again, P is odd here (=11), so the  
end points of the frequency scale  
are at ±(π– (π/P)), not ±π. 
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Spectrum of Digital Transmissions 

|Ak| 

Ak 
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Observations on previous figure 
•  The waveform x[n] cannot vary faster than the step change every 7 

samples, so we expect the highest frequency components in the 
waveform to have a period around 14 samples. (The is rough and 
qualitative, as x[n] is not sinusoidal.) 

•  A period of 14 corresponds to a frequency of 2π/14 = π/7, which 
is 1/7 of the way from 0 to the positive end of the frequency axis 
at π (so k approximately 100/7 or 14 in the figure). And that 
indeed is the neighborhood of where the Fourier coefficients drop 
off significantly in magnitude.  

•  There are also lower-frequency components corresponding to the 
fact that the 1 or 0 level may be held for several bit slots. 

•  And there are higher-frequency components that result from the 
transitions between voltage levels being sudden, not gradual. 
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Effect of Band-limiting a Transmission 
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The DTFS is also good for  
finite-duration signals! 

x[n]= Ak
k= P
! e j"kn

Claim: Over any contiguous interval of length P that we may be 
interested in --- say n=0,1,…,P–1 for concreteness --- an arbitrary  
DT signal x[n] can be written in the form 

What’s going on here? If we know we will only be interested in  
the interval [0,P–1], then it doesn’t matter that our  
representation above will create periodically repeating  
extensions outside the interval of interest.  
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Application 

h[.] x[n] y[n] 
 

Suppose x[n] is nonzero only over the time interval [0 , nx], 
and h[n] is nonzero only over the time interval [0 , nh] .  
 
In what time interval can the non-zero values of y[n] be 
guaranteed to lie? The interval [0 , nx + nh] . 

Since all the action we are interested in is confined to this  
interval, choose P – 1 ≥ nx + nh , then use the DTFS to  
represent x[n] and y[n] over this interval.  
 
This is actually the much more common use of the DTFS! 
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The Need for Speed:  
Fast Fourier Transform (FFT) 

x[n]= 1
P

Xk
k= P
! e j"kn  ,   Xk = x[n] 

n= P
! e# j"kn

Computing these series involves O(P2) operations – when P gets 
large, the computations get very   s   l   o   w…. 
 
Happily, in 1965 Cooley and Tukey published a fast method for 
computing the Fourier transform (aka FFT, IFFT), rediscovering  
a technique known to Gauss.  This method takes O(P log P) 
operations. 
 

P = 1000,  P2 = 1000000,  P logP ≈ 10000 


