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6.02 Fall 2011 
Lecture #15 

•  More on signal spectra  
•  Modulation & demodulation 
•  Frequency-division multiplexing (FDM) 
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Main Messages So Far (in words) 
1. A huge class of discrete-time (and continuous-time) signals  
(periodic, as we’ve seen, but also  
absolutely summable/square summable/slow growth) 
 
can be written --- using Fourier series and transforms --- as  
 
weighted sums of sinusoids  
(ranging from very slow to very fast) 
or (equivalently, but more compactly)  
complex exponentials.  
 
The sums can be discrete ∑ or continuous ∫ (or both).  

2. LTI systems act very simply on sums of sinusoids: 
superposition of responses to each sinusoid, with the 
frequency response determining the frequency-dependent  
scaling of magnitude, shifting in phase.  
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Weighted Sums of  
Complex Exponentials 

x[n]= Ak
k= P
! e j"kn =

1
P

Xk
k= P
! e j"kn

Xk = AkP = x[n] e# j"kn

n= P
!

Synthesis equation 
for periodic signals of 
period P, or signals of  
finite duration P 

Analysis equation 
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Sinusoids versus Complex Exponentials  
(six of one or half-a-dozen of the other) 

For a real signal, A-k = Ak
* , so we can combine 

 
       A-kexp(–jΩn)   +  Akexp(jΩn) 
 
into the following single term for 1 ≤ k ≤ P/2 [for even 
P, otherwise (P-1)/2]: 
 
2 x  Real part of Akexp(jΩn)  
 
                      = 2 |Ak|cos(Ωn + <Ak)  
 
So: 
 
 
 
 
        (Note that A0 is real anyway.) 
  

x[n]= A0 + 2 | Ak | cos(!k
k"1
# n+ < Ak )
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Some examples of periodic signals, period P 
•  x[n] = 1 for all n 

⇒  A0 = 1, all other  Ak = 0 , i.e., signal content concentrated at “DC” 

•  x[n] = cos(Ω3n) , Ω3 = 3(2π/P) 

⇒  A-3 =  A3 = 0.5, all other  Ak = 0 , i.e., content at Ω3 , all cosine 

•  x[n] = sin(Ω3n) 
⇒  A-3 = 0.5j , A3 = –0.5j , all other  Ak = 0 , i.e., content at Ω3 , all sine 

 

•  x[n] = cos(Ω3n+φ) 

⇒  A-3 = 0.5 exp(–jφ) ,  A3 = 0.5 exp(jφ), all other  Ak = 0 , i.e., content at 
Ω3 , mixed sine and cosine 

•  x[n] = [1, 0, 0, … , 0]    (P values, repeated periodically, δP[n])  

⇒  all Ak=1/P,  i.e., content uniformly spread over all frequencies! 
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DT Fourier Transform (DTFT) for  
Spectral Representation of General x[n]   

If we can write 

h[n]= 1
2!

H (!)e j!n
<2!>
" d! H (!) = h[n]e" j!n

n
#where 

then we can write 

x[n]= 1
2!

X(!)e j!n
<2!>
" d! X(!) = x[n]e" j!n

n
#where 

This Fourier representation expresses x[n] as  
a weighted combination of         for all Ω in [–π,π], 
not just P specific values.  

e j!n

Any contiguous  
interval of length 
2π 
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Forget you saw that! 
 

(More in 6.003, 6.011) 

(OK, maybe just two more slides on it here!) 
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Another way to come at the DTFT 

x[n]= 1
2!

Xk
k= P
! e j"kn 2!

P
 ,   Xk = x[n] 

n= P
! e# j"kn

In the DTFS, let P go to infinity, to indicate a non-periodic  
signal. Then with                    and replacing summation by  
integration, you can see how the DTFS 

2! / P ! d" 

could become the DTFT 

x[n]= 1
2!

X(!)e j!n
<2!>
" d! X(!) = x[n]e" j!n

n
#where 

This is why I like the Xk choice for DTFS ceofficients,  
rather than the Ak choice.  
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Yk =  H (!k )Xk

Input/Output Behavior of  
LTI System in Frequency Domain 

H(Ω) 
x[n]= Ake

j!kn

k= P
" y[n]= H (!k )Ake

j!kn

k= P
"

x[n]= 1
2!

X(!)e j!n
<2!>
" d! y[n]= 1

2!
H (!)X(!)e j!n

<2!>
" d!

Y (!) =  H (!)X(!)
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Spectrum of Digital Transmissions 
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Effect of Band-limiting a Transmission 
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The Need for Speed:  
Fast Fourier Transform (FFT) 

x[n]= 1
P

Xk
k= P
! e j"kn  ,   Xk = x[n] 

n= P
! e# j"kn

Computing these series involves ~P2 operations, so when P gets 
large, the computations get very   s   l   o   w  …. 
 
Happily, in 1965 Cooley and Tukey published a fast method for 
computing the Fourier transform and its inverse (aka the FFT, 
IFFT), exploiting the nice structure of complex exponentials, 
rediscovering  a technique known to Gauss (the “Prince of 
Mathematicians” was there first!).  This method takes ~Plog2P 
operations. 
 P = 1,024;  P2 = 1,048,576;  Plog2P ≈ 10,240   
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OK, back to digital communications 
 
 

better equipped with language and tools to 
understand and analyze 
a key part of the system 
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From Baseband to Modulated Signal, and 
Back 

codeword  
bits in 

codeword  
bits out 

101110101 DAC 

ADC 

NOISY & DISTORTING  ANALOG CHANNEL 

modulate 

101110101 demodulate 
& filter 

generate 
digitized  
symbols 

sample & 
threshold 

x[n] 

y[n] 
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From Brant Rock tower, radio age was sparked 
By Carolyn Y. Johnson, Globe Staff  |  July 30, 2006 
 
MARSHFIELD, MA -- A century ago*, radio pioneer 
Reginald A. Fessenden used a massive 420-foot radio 
tower that dwarfed Brant Rock to send voice and music to 
ships along the Atlantic coast, in what has become known 
as the world's first voice radio broadcast.  
 
This week, Marshfield will lay claim to its little-known 
radio heritage with a three-day extravaganza to celebrate 
the feat -- including pilgrimages to the base of the long-
dismantled tower, a cocktail to be named the Fessenden 
Fizz, and a dramatic reenactment of the historic moment, 
called ``Miracle at Brant Rock." 
 

Audio Signals Carried on Electromagnetic Waves  
Propagating through the Atmosphere 

*Christmas Eve, 1906 
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Some ballpark numbers 
“420 ft antenna,” say 150 m. For this to be comparable with a 
quarter-wavelength of sinusoidal EM wave traveling at 3x108 m/s, 
we need a frequency of 3x108/(4x150) = 0.5x106 Hz = 500 kHz.   
 
Fessenden, using a special rotating electrical generator built by GE, 
managed 50 kHz! --- and not with much power.  But he invented 
and demonstrated amplitude modulation (AM): amplitude variations 
of the sinusoidal “carrier” signal carry the signal of interest.  
 
Fessenden started his scientific work with Edison in NJ.  
His application to Edison said “Do not know anything 
about electricity, but can learn pretty quick.”  
Edison wrote back to say “Have enough men now that  
do not know about electricity.” 
 
Fessenden was awarded around 500 patents in his lifetime! 
Lived in Chestnut Hill, Newton, in a house that’s still there, and 
on the National Register of Historic Places (because he lived there!).   
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AM Radio today 

Broadcast power 250 W to 50 kW. No rotating machines! ---  
just electronic oscillators. 
 
AM radio stations are on 520 – 1610 kHz (‘medium wave”)  
in the US, with carrier frequencies of different stations 
spaced 10 kHz apart. 
 
The principles of AM, with various extensions and  
modifications, find their way into many other settings  
(not just AM on your radio dial!).  
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Using Some Piece of the Spectrum 
•  You have: a band-limited signal x[n] at baseband (i.e., 

centered around 0 frequency). 

•  You want: the same signal, but centered around some specific 
frequency kcΩ1. 

•  Modulation: convert from baseband up to kcΩ1. 

•  Demodulation: convert from kcΩ1 down to baseband 

Re(ak) 

Im(ak) 

+kx －kx 

Re(ak) 

Im(ak) 

+kc －kc 

Signal centered at 0 Signal centered at kc 

modulation 

demodulation 

Spectrum of 
baseband 
signal 

Spectrum of 
transmitted 
signal 
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Modulation 

×x[n] 

cos(kcΩ1n) 

t[n] 

t[n]= Ake
jk!1n

k="kx

kx

#
$

%
&
&

'
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)
)

1
2
e jkc!1n + 1

2
e" jkc!1n
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'

()
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2
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j k+kc( )!1n

k="kx

kx
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1
2

Ake
j k"kc( )!1n

k="kx

kx

#

Re(ak) 

Im(ak) 

+kc －kc 

A/2 

A/2 

For band-limited signal 
Ak are nonzero only for 
small range of  ±k i.e., just replicate baseband  

signal at ±kc, and scale 
by ½. 
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“Heterodyne principle” (Fessenden) 

cos(!modn).cos(!carn)

=

0.5{cos[(!car +!mod )n]+ cos[(!car "!mod )n]}

Multiplying two sinusoids causes the 
sum and difference frequencies to appear. 
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Example: Modulation (time) Shaped pulses! Chosen 
because we know the  
channel is bandlimited 

Baseband input x[n] 

Carrier signal 

Transmitted signal t[n] 
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Example: Modulation  
(freq domain picture) 

Band-limited x[n] cos(35Ω1n) t[n] 
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Demodulation 

×t[n] 

cos(kcΩ1n) 

z[n] 

z[n]= t[n] 1
2
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What we want 

Hmm.  So z[n] has what 
we want at baseband, 
but has signal we don’t 
want at ±2kcΩ1 

Assuming no 
distortion or 
noise on  
channel, so  
what was  
transmitted  
is received 
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Demodulation 

×y[n] 

cos(kcΩ1n) 

z[n] 
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What we want 

Hmm.  So z[n] has what 
we want at baseband, 
but has signal we don’t 
want at ±2kcΩ1 
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That is just Fessenden’s heterodyne 
principle at work again: 

Taking the sum and difference frequencies of  
 
                        Ωc  	

	

with the sum and difference frequencies of 
 

      Ωc  and  Ωm ,  
 
i.e.,                    ±Ωc ± Ωm  
 
results in components at frequencies that are  
 
        ±Ωm away from 0, –2Ωc , +2Ωc  
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Demodulation Frequency Diagram 
Re(ak) 

Im(ak) 

+kc －kc 

A/2 

A/2 

Re(ak) 

Im(ak) 

－2kc 

A/2 

A/2 

+2kc 

t[n] 

z[n] 

Re(ak) 

Im(ak) 

+kc －kc 

1/2 

cos(kcΩ1n) 

Re(ak) 

Im(ak) 

－2kc 

A/2 

A/2 

+2kc 

+ 
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Demodulation Frequency Diagram 
Re(ak) 

Im(ak) 

+kc －kc 

A/2 

A/2 

Re(ak) 

Im(ak) 

－2kc 

A/2 

A/2 

+2kc 

t[n] 

z[n] 

What we want 

Note combining of signals around 0 
results in doubling of amplitude 

Re(ak) 

Im(ak) 

+kc －kc 

1/2 

cos(kcΩ1n) 
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Example: Demodulation (time) 
Showing idealized signals ---  
no bandwidth limit on channel  

Note: lowpass filtering of this signal 
will yield x[n]/2 ! 
 

Baseband signal x[n] 

    t[n] = x[n]cos(Ωcn)  

z[n] = t[n]cos(Ωcn)  
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Example: Demodulation (freq) 
x[n] t[n] z[n] 

Only want these frequencies… 



6.02 Fall 2011 Lecture 15, Slide #30 

Demodulation + LPF 

×t[n] z[n] LPF y[n] 

Cutoff @ ±kx 
Gain = 2 

cos(kcΩ1n) 


