

INTRODUCTION TO EECS II DIGITAL COMMUNICATION SYSTEMS

6.02 Fall 2011 Lecture \#15

- More on signal spectra
- Modulation \& demodulation
- Frequency-division multiplexing (FDM)

Main Messages So Far (in words)

1. A huge class of discrete-time (and continuous-time) signals (periodic, as we've seen, but also absolutely summable/square summable/slow growth)
can be written --- using Fourier series and transforms --- as
weighted sums of sinusoids
(ranging from very slow to very fast) or (equivalently, but more compactly) complex exponentials.

The sums can be discrete \sum or continuous \int (or both).
2. LTI systems act very simply on sums of sinusoids: superposition of responses to each sinusoid, with the frequency response determining the frequency-dependent scaling of magnitude, shifting in phase.

Weighted Sums of Complex Exponentials

$$
x[n]=\sum_{k=\langle P\rangle} A_{k} e^{j \Omega_{k} n}=\frac{1}{P} \sum_{k=\langle P\rangle} X_{k} e^{j \Omega_{k} n}
$$

Synthesis equation for periodic signals of period P, or signals of finite duration P

$$
X_{k}=A_{k} P=\sum_{n=\langle P\rangle} x[n] e^{-j \Omega_{k} n}
$$

Analysis equation

Sinusoids versus Complex Exponentials (six of one or half-a-dozen of the other)

For a real signal, $\mathrm{A}_{-\mathrm{k}}=\mathrm{A}_{\mathrm{k}}{ }^{*}$, so we can combine

$$
\mathrm{A}_{-\mathrm{k}} \exp (-\mathrm{j} \Omega \mathrm{n})+\mathrm{A}_{\mathrm{k}} \exp (j \Omega \mathrm{n})
$$

into the following single term for $1 \leq \mathrm{k} \leq \mathrm{P} / 2$ [for even P , otherwise ($\mathrm{P}-1$)/2]:
$2 \times$ Real part of $\mathrm{A}_{\mathrm{k}} \exp (j \Omega \mathrm{n})$

$$
=2\left|\mathrm{~A}_{\mathrm{k}}\right| \cos \left(\Omega \mathrm{n}+<\mathrm{A}_{\mathrm{k}}\right)
$$

So:

$$
x[n]=A_{0}+\sum_{k \geq 1} 2\left|A_{k}\right| \cos \left(\Omega_{k} n+<A_{k}\right)
$$

(Note that A_{0} is real anyway.)

Some examples of periodic signals, period P

- $\mathrm{x}[\mathrm{n}]=1$ for all n
$\Rightarrow A_{0}=1$, all other $A_{k}=0$, i.e., signal content concentrated at "DC"
- $\mathrm{x}[\mathrm{n}]=\cos \left(\Omega_{3} \mathrm{n}\right), \Omega_{3}=3(2 \pi / \mathrm{P})$
$\Rightarrow \mathrm{A}_{-3}=\mathrm{A}_{3}=0.5$, all other $\mathrm{A}_{\mathrm{k}}=0$, i.e., content at Ω_{3}, all cosine
- $\mathrm{x}[\mathrm{n}]=\sin \left(\Omega_{3} \mathrm{n}\right)$
$\Rightarrow \mathrm{A}_{-3}=0.5 \mathrm{j}, \mathrm{A}_{3}=-0.5 \mathrm{j}$, all other $\mathrm{A}_{\mathrm{k}}=0$, i.e., content at Ω_{3}, all sine
- $\mathrm{x}[\mathrm{n}]=\cos \left(\Omega_{3} \mathrm{n}+\phi\right)$
$\Rightarrow \mathrm{A}_{-3}=0.5 \exp (-\mathrm{j} \phi), \mathrm{A}_{3}=0.5 \exp (\mathrm{j} \phi)$, all other $\mathrm{A}_{\mathrm{k}}=0$, i.e., content at Ω_{3}, mixed sine and cosine
- $\mathrm{x}[\mathrm{n}]=[1,0,0, \ldots, 0] \quad\left(\mathrm{P}\right.$ values, repeated periodically, $\left.\delta_{\mathrm{P}}[\mathrm{n}]\right)$
\Rightarrow all $A_{k}=1 / P$, i.e., content uniformly spread over all frequencies!

DT Fourier Transform (DTFT) for Spectral Representation of General x[n]

If we can write

$$
h[n]=\frac{1}{2 \pi} \int_{<2 \pi>} H(\Omega) e^{j \Omega n} d \Omega \quad \begin{aligned}
& \text { where contiguous } \\
& \text { Anterval of length }
\end{aligned} \quad H(\Omega)=\sum_{n} h[n] e^{-j \Omega n}
$$

$$
x[n]=\frac{1}{2 \pi} \int_{<2 \pi>} X(\Omega) e^{j \Omega n} d \Omega \quad \text { where } \quad X(\Omega)=\sum_{n} x[n] e^{-j \Omega n}
$$

This Fourier representation expresses $\mathrm{x}[\mathrm{n}]$ as a weighted combination of $e^{j \Omega n}$ for all Ω in $[-\pi, \pi]$, not just P specific values.

Forget you saw that!

(More in 6.003, 6.011)

(OK, maybe just two more slides on it here!)

Another way to come at the DTFT

In the DTFS, let P go to infinity, to indicate a non-periodic signal. Then with $2 \pi / P \approx d \Omega$ and replacing summation by integration, you can see how the DTFS

$$
x[n]=\frac{1}{2 \pi} \sum_{k=\langle P\rangle} X_{k} e^{j s_{k} n} \frac{2 \pi}{P},
$$

$$
\mathrm{X}_{k}=\sum_{n=\langle P\rangle} x[n] e^{-j \Omega_{k} n}
$$

could become the DTFT

$$
x[n]=\frac{1}{2 \pi} \int_{<2 \pi>} X(\Omega) e^{j \Omega n} d \Omega \quad \text { where } \quad X(\Omega)=\sum_{n} x[n] e^{-j \Omega n}
$$

This is why I like the X_{k} choice for DTFS ceofficients, rather than the A_{k} choice.

Input/Output Behavior of LTI System in Frequency Domain

$$
\begin{gathered}
x[n]=\sum_{k=\langle P\rangle} A_{k} e^{j \Omega_{k} n} \longrightarrow \square H\left[n(\Omega) \longrightarrow \sum_{k=\langle P\rangle} H\left(\Omega_{k}\right) A_{k} e^{j \Omega_{k} n}\right. \\
x[n]=\frac{1}{2 \pi} \int_{<2 \pi>} X(\Omega) e^{j \Omega n} d \Omega \\
y[n]=\frac{1}{2 \pi} \int_{<2 \pi>} H(\Omega) X(\Omega) e^{j \Omega n} d \Omega \\
Y_{k}=H\left(\Omega_{k}\right) X_{k} \\
Y(\Omega)=H(\Omega) X(\Omega)
\end{gathered}
$$

Spectrum of Digital Transmissions

Effect of Band-limiting a Transmission

The Need for Speed: Fast Fourier Transform (FFT)

$$
x[n]=\frac{1}{P} \sum_{k=\{P\rangle} X_{k} e^{j \Omega_{k} n}, \quad \mathrm{X}_{k}=\sum_{n=\langle P\rangle} x[n] e^{-j \Omega_{k} n}
$$

Computing these series involves $\sim \mathrm{P}^{2}$ operations, so when P gets large, the computations get very $\mathrm{s} 1 \mathrm{o} \mathrm{w} \ldots$.

Happily, in 1965 Cooley and Tukey published a fast method for computing the Fourier transform and its inverse (aka the FFT, IFFT), exploiting the nice structure of complex exponentials, rediscovering a technique known to Gauss (the "Prince of Mathematicians" was there first!). This method takes $\sim \operatorname{Plog}_{2} \mathrm{P}$ operations.

$$
P=1,024 ; \quad P^{2}=1,048,576 ; \quad \operatorname{Plog}_{2} P \approx 10,240
$$

OK, back to digital communications

better equipped with language and tools to understand and analyze
a key part of the system

From Baseband to Modulated Signal, and Back

codeword
bits in

$101110101 \longrightarrow$| generited |
| :--- |
| digitized |
| symbols |

NOISY \& DISTORTING ANALOG CHANNEL

From Brant Rock tower, radio age was sparked By Carolyn Y. Johnson, Globe Staff | July 30, 2006

MARSHFIELD, MA -- A century ago*, radio pioneer

Reginald A. Fessenden used a massive 420-foot radio

 tower that dwarfed Brant Rock to send voice and music to ships along the Atlantic coast, in what has become known as the world's first voice radio broadcast.This week, Marshfield will lay claim to its little-known radio heritage with a three-day extravaganza to celebrate the feat -- including pilgrimages to the base of the longdismantled tower, a cocktail to be named the Fessenden Fizz, and a dramatic reenactment of the historic moment, called "`Miracle at Brant Rock."

Audio Signals Carried on Electromagnetic Waves Propagating through the Atmosphere

Some ballpark numbers

"420 ft antenna," say 150 m . For this to be comparable with a quarter-wavelength of sinusoidal EM wave traveling at $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, we need a frequency of $3 \times 10^{8} /(4 \times 150)=0.5 \times 10^{6} \mathrm{~Hz}=500 \mathrm{kHz}$.

Fessenden, using a special rotating electrical generator built by GE, managed 50 kHz ! --- and not with much power. But he invented and demonstrated amplitude modulation (AM): amplitude variations of the sinusoidal "carrier" signal carry the signal of interest.

Fessenden started his scientific work with Edison in NJ. His application to Edison said "Do not know anything about electricity, but can learn pretty quick."
Edison wrote back to say "Have enough men now that do not know about electricity."

Fessenden was awarded around 500 patents in his lifetime! Lived in Chestnut Hill, Newton, in a house that's still there, and on the National Register of Historic Places (because he lived there!).

AM Radio today

Broadcast power 250 W to 50 kW . No rotating machines! --just electronic oscillators.

AM radio stations are on $520-1610 \mathrm{kHz}$ ('medium wave") in the US, with carrier frequencies of different stations spaced 10 kHz apart.

The principles of AM, with various extensions and modifications, find their way into many other settings (not just AM on your radio dial!).

Using Some Piece of the Spectrum

- You have: a band-limited signal $x[n]$ at baseband (i.e., centered around 0 frequency).
- You want: the same signal, but centered around some specific frequency $\mathrm{k}_{\mathrm{c}} \Omega_{1}$.
- Modulation: convert from baseband up to $\mathrm{k}_{\mathrm{c}} \Omega_{1}$.
- Demodulation: convert from $\mathrm{k}_{\mathrm{c}} \Omega_{1}$ down to baseband

Signal centered at 0

Spectrum of transmitted

Signal centered at k_{c}

Modulation

For band-limited signal A_{k} are nonzero only for small range of $\pm \mathrm{k}$

$$
\begin{aligned}
t[n] & =\left[\sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j k \Omega_{1} n}\right]\left[\frac{1}{2} e^{j k_{k} \Omega_{1} n}+\frac{1}{2} e^{-j k_{c} \Omega_{1} n}\right] \\
& =\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j\left(k+k_{c}\right) \Omega_{1},}+\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j\left(k-k_{k}\right) \Omega_{1}, n}
\end{aligned}
$$

i.e., just replicate baseband signal at $\pm \mathrm{k}_{\mathrm{c}}$, and scale by $1 / 2$.

"Heterodyne principle" (Fessenden)

```
\(\cos \left(\Omega_{\bmod } n\right) \cdot \cos \left(\Omega_{c a r} n\right)\)
    \(=\)
    \(0.5\left\{\cos \left[\left(\Omega_{c a r}+\Omega_{\text {mod }}\right) n\right]+\cos \left[\left(\Omega_{c a r}-\Omega_{\text {mod }}\right) n\right]\right\}\)
```

Multiplying two sinusoids causes the sum and difference frequencies to appear.

Example: Modulation (time)

Shaped pulses! Chosen because we know the channel is bandlimited
Baseband input $\mathrm{x}[\mathrm{n}]$

Carrier signal
$\cos [35(2 \pi / N) n]$

Transmitted signal $\mathrm{t}[\mathrm{n}]$ $y[n]$

Example：Modulation （freq domain picture）

Band－limited $\mathrm{x}[\mathrm{n}]$
$\cos \left(35 \Omega_{1} n\right)$
$\mathrm{t}[\mathrm{n}]$

Assuming no

Demodulation

 distortion or noise on channel, so what was transmitted is received
$\cos \left(\mathrm{k}_{\mathrm{c}} \Omega_{1} \mathrm{n}\right)$

Hmm. So $z[n]$ has what we want at baseband, but has signal we don't want at $\pm 2 \mathrm{k}_{\mathrm{c}} \Omega_{1}$

$$
\begin{aligned}
z[n] & =t[n]\left[\frac{1}{2} e^{j k_{c} \Omega_{1} n}+\frac{1}{2} e^{-j k_{c} \Omega_{1} n}\right] \\
& =\left[\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j\left(k+k_{c}\right) \Omega_{1} n}+\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j\left(k-k_{c}\right) \Omega_{1} n}\right]\left[\frac{1}{2} e^{j k_{c} \Omega_{1} n}+\frac{1}{2} e^{-j k_{c} \Omega_{1} n}\right] \\
& =\frac{1}{4} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j\left(k+2 k_{c}\right) \Omega_{1} n}+\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j k \Omega_{1} n}+\frac{1}{4} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j\left(k-2 k_{c}\right) \Omega_{1} n}
\end{aligned}
$$

Demodulation

$\cos \left(\mathrm{k}_{\mathrm{c}} \Omega_{1} \mathrm{n}\right)$

Hmm. So $z[n]$ has what we want at baseband, but has signal we don't want at $\pm 2 \mathrm{k}_{\mathrm{c}} \Omega_{1}$

$$
\begin{aligned}
z[n] & =y[n]\left[\frac{1}{2} e^{j k_{c} \Omega_{1} n}+\frac{1}{2} e^{-j k_{c} \Omega_{1} n}\right] \\
& =\left[\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j\left(k+k_{c}\right) \Omega_{1} n}+\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j\left(k-k_{c}\right) \Omega_{1} n}\right]\left[\frac{1}{2} e^{j k_{c} \Omega_{1} n}+\frac{1}{2} e^{-j k_{c} \Omega_{1} n}\right] \\
& =\frac{1}{4} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j\left(k+2 k_{c}\right) \Omega_{1} n}+\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j k \Omega_{1} n}+\frac{1}{4} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j\left(k-2 k_{c}\right) \Omega_{1} n}
\end{aligned}
$$

That is just Fessenden's heterodyne principle at work again:

Taking the sum and difference frequencies of

$$
\Omega_{\mathrm{c}}
$$

with the sum and difference frequencies of

$$
\begin{array}{ll}
& \Omega_{\mathrm{c}} \text { and } \Omega_{\mathrm{m}}, \\
\text { i.e., } & \pm \Omega_{\mathrm{c}} \pm \Omega_{\mathrm{m}}
\end{array}
$$

results in components at frequencies that are

$$
\pm \Omega_{\mathrm{m}} \text { away from } 0,-2 \Omega_{\mathrm{c}},+2 \Omega_{\mathrm{c}}
$$

Demodulation Frequency Diagram

$z[n]$

Demodulation Frequency Diagram

Example: Demodulation (time)

Showing idealized signals ---

 no bandwidth limit on channelBaseband signal $\mathrm{x}[\mathrm{n}]$

Example: Demodulation (freq)

$\mathrm{x}[\mathrm{n}]$

$\mathrm{t}[\mathrm{n}]$
${ }_{*\left(a_{A}\right)}$

z[n]

Only want these frequencies...

Demodulation + LPF

before LPF

