More on modulation and demodulation, FDM
Effects of phase errors and channel delays
Quadrature components
Brief comments on: pulse shaping; spectral content of noise; optimal filtering at receiver
From Baseband to Modulated Signal, and Back

codeword bits in
101110101

generate digitized samples
x[n]

modulate
DAC

ADC

demodulate & filter
y[n]
sample & threshold

NOISY & DISTORTING ANALOG CHANNEL

101110101
codeword bits out
Using Some Piece of the Spectrum

- You have: a band-limited signal $x[n]$ at baseband (i.e., centered around 0 frequency).
- You want: the same signal, but centered around some specific frequency $k_c \Omega_1$.
- Modulation: convert from baseband up to $k_c \Omega_1$.
- Demodulation: convert from $k_c \Omega_1$ down to baseband.

Spectrum of baseband signal

- Signal centered at 0

Spectrum of transmitted signal

- Signal centered at k_c

Diagram:

- Spectrum of baseband signal: A triangular spectrum centered at 0 with real and imaginary components.
- Spectrum of transmitted signal: Similar triangular spectrum centered at k_c.
Multiple Transmitters: Frequency Division Multiplexing (FDM)

Channel “performs addition” by superposing signals (“voltages”) from different frequency bands.

Choose bandwidths and k_c’s so as to avoid overlap! Once signals combine at a given frequency, can’t be undone…
AM Radio

AM radio stations are on 520 – 1610 kHz (‘medium wave”) in the US, with carrier frequencies of different stations spaced 10 kHz apart.

Physical effects very much affect operation. e.g., EM signals at these frequencies propagate much further at night (by “skywave” through the ionosphere) than during the day (100’s of miles by “groundwave” diffracting around the earth’s surface), so transmit power may have to be lowered at night!
AM Radio

Skywave Effect of AM Radio
Modulation

\[x[n] \times \cos(k_c \Omega_1 n) \rightarrow t[n] \]

For band-limited signal \(A_k \) are nonzero only for small range of \(\pm k \)

\[
t[n] = \left[\sum_{k=-k_x}^{k_x} A_k e^{jk \Omega_1 n} \right] \left[\frac{1}{2} e^{jk_c \Omega_1 n} + \frac{1}{2} e^{-jk_c \Omega_1 n} \right] = \frac{1}{2} \sum_{k=-k_x}^{k_x} A_k e^{j(k\pm k_c) \Omega_1 n} + \frac{1}{2} \sum_{k=-k_x}^{k_x} A_k e^{j(k-2k_c) \Omega_1 n}
\]

i.e., just replicate baseband signal at \(\pm k_c \), and scale by \(\frac{1}{2} \).
“Heterodyne principle” (Fessenden)

\[
\cos(\Omega_{\text{mod}} n) \cdot \cos(\Omega_{\text{car}} n) = 0.5\{ \cos[(\Omega_{\text{car}} + \Omega_{\text{mod}})n] + \cos[(\Omega_{\text{car}} - \Omega_{\text{mod}})n] \}
\]

Multiplying two sinusoids causes the sum and difference frequencies to appear.
Is Modulation Linear? Time-Invariant? ...

... as a system that takes input $x[n]$ and produces output $t[n]$?

Yes, linear!

No, not time-invariant!

Apply definitions from Ch. 10 notes
Example: Modulation (time)

Shaped pulses! Chosen because we know the channel is bandlimited

Baseband input $x[n]$

Carrier signal

Transmitted signal $t[n]$
Effect of Band-limiting a Transmission

\[|a_k| \]

\(x[n] \) synthesized from \(a_k \)

\[|a_k| \text{ cutoff @ } \pm k = 25 \]

\(x[n] \) synthesized from \(a_k \)

\[|a_k| \text{ cutoff @ } \pm k = 15 \]

\(x[n] \) synthesized from \(a_k \)
Example: Modulation (freq domain picture)

Band-limited $x[n] \quad \cos(35\Omega_1 n) \quad t[n]$
Assuming no distortion or noise on channel, so what was transmitted is received

\[z[n] = t[n] \left[\frac{1}{2} e^{j k_c \Omega_1 n} + \frac{1}{2} e^{-j k_c \Omega_1 n} \right] \]

\[= \frac{1}{2} \sum_{k=-k_x}^{k_x} A_k e^{j(k-k_c)\Omega_1 n} + \frac{1}{2} \sum_{k=-k_x}^{k_x} A_k e^{j(k-k_c)\Omega_1 n} \]

\[= \frac{1}{4} \sum_{k=-k_x}^{k_x} A_k e^{j(2k-k_c)\Omega_1 n} + \frac{1}{2} \sum_{k=-k_x}^{k_x} A_k e^{j(k-k_c)\Omega_1 n} + \frac{1}{4} \sum_{k=-k_x}^{k_x} A_k e^{j(k-2k_c)\Omega_1 n} \]

Hmm. So \(z[n] \) has what we want at baseband, but has signal we don’t want at \(\pm 2k_c \Omega_1 \)

What we want
That is just Fessenden’s heterodyne principle at work again:

Taking the sum and difference frequencies of

\[\Omega_c \]

with the sum and difference frequencies of \(\Omega_c \) and \(\Omega_m \),

i.e.,

\[\pm \Omega_c \pm \Omega_m \]

results in components at frequencies that are

\[\pm \Omega_m \text{ away from } 0, -2\Omega_c, +2\Omega_c \]
Demodulation Frequency Diagram

\[t[n] \]

\[\cos(k_c \Omega_1 n) \]

\[z[n] \]
Demodulation Frequency Diagram

Note combining of signals around 0 results in doubling of amplitude

What we want
Example: Demodulation (time)

Showing idealized signals ---
no bandwidth limit on channel

Baseband signal $x[n]$

$y[n] = x[n] \cos(\Omega_c n)$

$z[n] = t[n] \cos(\Omega_c n)$

Note: lowpass filtering of this signal will yield $x[n]/2$!
Example: Demodulation (freq)

Only want these frequencies...
Demodulation + LPF

t[n] \times $z[n]$ \rightarrow LPF \rightarrow y[n]

$\cos(k_c\Omega_1n)$

Cutoff @ $\pm k_x$
Gain = 2
Ideal Modulation/Demodulation

transmitter

\[x[n] \rightarrow t[n] = \cos(\Omega_c n) \]

receiver

\[z[n] \rightarrow y[n] \text{ LPF, Cutoff @ } \pm k_{in}, \text{ Gain = 2} \]

\[z[n] = x[n] \times \cos(\Omega_c n) \]

plots

- *band-limited* \(in[n] \)
- \(y[n] \text{ where } \Omega = 35(2\pi/N) \)
- \(z[n] \)
- \(out[n] \)
Phase Error in Demodulator

transmitter

\[x[n] \rightarrow t[n] \rightarrow \cos(\Omega_c n) \]

receiver

\[z[n] \rightarrow \cos(\Omega_c n - \phi) \rightarrow \text{LPF} \rightarrow y[n] \]

- Gain = 2
- Cutoff @ ±k_in

\[\text{band-limited } \hat{i}[n] \]

\[\text{out}[n] \text{ with } \phi = \pi/4 \]

\[\text{out}[n] \text{ with } \phi = \pi/2 \]

\[\text{out}[n] \text{ with } \phi = 3\pi/4 \]
Phase Error Math

Let’s derive an equation for $z[n]$:

$$z[n] = t[n] \cdot \cos(\Omega_c n - \varphi) = x[n] \cdot \cos(\Omega_c n) \cdot \cos(\Omega_c n - \varphi)$$

But

$$\cos(\Omega_c n) \cdot \cos(\Omega_c n - \varphi) = 0.5\{\cos(2\Omega_c n - \varphi) + \cos(\varphi)\}$$

It follows that the demodulated output, after the LPF of gain 2, is

$$y[n] = x[n] \cdot \cos(\varphi)$$

So a phase error of φ results in amplitude scaling by $\cos(\varphi)$.

Note: in the extreme case where $\varphi=\pi/2$, we are demodulating by a sine rather than a cosine, and we get $y[n]=0$.
Demodulation with $\sin(k_c\Omega_1n)$

Hmm. So $z[n]$ no longer has the signal we want at baseband!

$$z[n] = t[n] \left[-\frac{j}{2} e^{j k_c \Omega_1 n} + \frac{j}{2} e^{-j k_c \Omega_1 n} \right]$$

$$= \left[\frac{1}{2} \sum_{k=-k_x}^{k_x} A_k e^{j (k+k_c) \Omega_1 n} + \frac{1}{2} \sum_{k=-k_x}^{k_x} A_k e^{j (k-k_c) \Omega_1 n} \right] \left[-\frac{j}{2} e^{j k_c \Omega_1 n} + \frac{j}{2} e^{-j k_c \Omega_1 n} \right]$$

$$= -\frac{j}{4} \sum_{k=-k_x}^{k_x} A_k e^{j (k+2k_c) \Omega_1 n} + \frac{j}{4} \sum_{k=-k_x}^{k_x} A_k e^{j (k-2k_c) \Omega_1 n}$$

Oops, no baseband signal!
Demodulation (sin) Frequency Diagram

\[j \cdot j = -1 \text{ so sign of } A_k \text{ flipped} \]

\[j \cdot j = +1 \text{ so sign of } A_k \text{ not flipped} \]

\[y[n] \]

\[z[n] \]
Demodulation (sin) Frequency Diagram

Note combining of signals around 0 results in cancellation!
Channel Delay

Very similar math to the previous “phase error” case:

\[z[n] = t_D[n] \cdot \cos(\Omega_c n) = t[n - D] \cdot \cos(\Omega_c n) \]
\[= x[n - D] \cdot \cos[\Omega_c (n - D)] \cdot \cos(\Omega_c n) \]

Passing this through the LPF:

\[y[n] = x[n - D] \cdot \cos(\Omega_c D) \]
Channel Delay Math

\[z[n] = t_D[n] \cdot \cos(\Omega_c n) = t[n - D] \cdot \cos(\Omega_c n) \]
\[= x[n - D] \cdot \cos[\Omega_c (n - D)] \cdot \cos(\Omega_c n) \]

But
\[\cos[\Omega_c (n - D)] \cdot \cos(\Omega_c n) = 0.5\{\cos(2\Omega_c n - \Omega_c D) + \cos(\Omega_c D)\} \]

It follows that the demodulated output (after the LPF of gain 2) is

\[y[n] = x[n - D] \cdot \cos(\Omega_c D) \]

So a channel delay of \(D \) results in amplitude scaling by \(\cos(\Omega_c D) \).

If \(\Omega_c D \) is an odd multiple of \(\pi / 2 \), then \(y[n]=0 \) !!
Fixing Phase Problems in the Receiver

So phase errors and channel delay both result in a scaling of the output amplitude, where the magnitude of the scaling can’t necessarily be determined at system design time:
- channel delay varies on mobile devices
- phase difference between transmitter and receiver is arbitrary

One solution: *quadrature demodulation*

\[
I[n] = x[n-D] \cdot \cos(\theta)
\]
\[
Q[n] = x[n-D] \cdot \sin(\theta)
\]

\[\theta = \varphi + \Omega_c D\]
Quadrature Demodulation

If we let

\[w[n] = I[n] + jQ[n] \]

then

\[|w[n]| = \sqrt{I[n]^2 + Q[n]^2} \]

\[= |x[n - D]| \sqrt{\cos^2 \theta + \sin^2 \theta} \]

\[= |x[n - D]| \]

OK for recovering \(x[n] \) if it never goes negative, as in on-off keying
In binary phase-shift keying (BPSK), the message bit selects one of two phases for the carrier, e.g., $\pi/2$ for 0 and $-\pi/2$ for 1.
Dealing With Phase Ambiguity

BPSK is also subject phase changes introduced by channel delays or phase difference between xmit and rcv: the received constellation will be rotated with respect to the transmitter’s constellation. Which phase corresponds to which bit?

The fix? Think of the phase encoding as *differential*, not absolute: a change in phase corresponds to a change in bit value. Assume that, by convention, messages start with a single 0 bit, i.e., prepend a 0 to each to message. Then the first phase change represents a 0→1 transition, the second phase change a 1→0 transition, and so on.
QPSK Modulation

We can use the quadrature scheme at the transmitter too:

Still need band limiting at transmitter

When mapping bits to voltage values, we should choose the values so that the maximum amplitude of $t[n]$ is 1. For QPSK (also referred to as QAM-4) that would mean $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = (0.707, 0.707)$.
From Baseband to Modulated Signal, and Back

codeword bits in
101110101

\[\begin{align*}
\text{generate digitized samples} & \quad x[n] \\
\text{modulate} & \quad \text{DAC} \\
\text{NOISY & DISTORTING ANALOG CHANNEL} & \\
\text{ADC} & \quad \text{demodulate & filter} \quad y[n] \\
\text{sample & threshold} & \quad \text{101110101 codeword bits out}
\end{align*} \]
Effect of Band-limiting a Transmission

$|a_k|$ cutoff @ $\pm k = 25$

$x[n]$ synthesized from a_k

$|a_k|$ cutoff @ $\pm k = 15$

$x[n]$ synthesized from a_k
Brief note 1: Shaping the Baseband Pulse

Rather than generating a rectangular-wave $x[n]$ at the source and then lowpass filtering to get bandlimited signal for transmission, use pulse-amplitude modulation (PAM):

$$x[n] = \sum_k b[k]p[n-kT]$$

where $b[k]$ is the voltage level for the k-th bit slot (e.g., 0 and 1, or -1 and 1), T is the bit-slot duration, and $p[n]$ is a basic pulse shape.

Our rectangular-wave $x[n]$ is of this type, but with a rectangular pulse for $p[n]$, and the subsequent bandlimiting can make this a poor signal for the receiver to deal with.

Other choices for $p[n]$ can fare much better on a bandlimited channel, and allow higher transmission rates.
Brief note 2: Spectral Content of Noise

What about the spectral content of noise? We need to know that in order to do optimal processing at the receiver.

It turns out that the expected power of white noise (i.e., uncorrelated or independent from sample to sample) is uniformly distributed (flat) over all frequencies, $-\pi$ to π. (That’s actually why it’s called white noise!)

Other kinds of noise will have spectral variation or coloring (hence called colored noise).
Brief note 3: Optimal Filtering at the Receiver

Can we do better than basing our 0,1 decision on just one well-chosen sample in each bit slot?

Yes, take a weighted average over all the relevant samples! Averaging increases the signal-to-noise ratio (because the variance of N uncorrelated measurements is 1/N of the variance of a single measurement).

This leads to the idea of “matched filtering”.

Courses to consider downstream for elaboration on such topics: 6.011 and 16.36