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6.02 Fall 2011 
Lecture #20 

•  addressing, forwarding, routing 
•  liveness, advertisements, integration 
•  distance-vector routing 
•  routing loops, counting to infinity 

6.02 Fall 2011 Lecture 20, Slide #2 

The Problem: Distributed Methods for 
Finding Paths in Networks 

•  Addressing (how to name nodes?) 
–  Unique identifier for global addressing 
–  Link name for neighbors 

•  Forwarding (how does a switch process a packet?) 

•  Routing (building and updating data structures to ensure 
that forwarding works) 

•  Functions of the network layer 
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Forwarding 

•  Core function is conceptually simple 
–  lookup(dst_addr) in routing table returns route (i.e., outgoing 

link) for packet 
–  enqueue(packet, link_queue) 
–  send(packet) along outgoing link 

•  And do some bookkeeping before enqueue 
–  Decrement hop limit (TTL); if 0, discard packet 
–  Recalculate checksum (in IP, header checksum) 

Switch 

6.02 Fall 2011 Lecture 20, Slide #4 

B 

C 

D 

E 

A 

4 

11 

5 

13 

Shortest Path Routing 

•  Each node wants to find the path with minimum total cost 
to other nodes 
–  We use the term “shortest path” even though we’re interested 

in min cost (and not min #hops)  

•  Several possible distributed approaches 
–  Vector protocols, esp. distance vector (DV) 
–  Link-state protocols (LS) 
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Routing Table Structure 

Destination Link (next-hop) Cost 

A L1 18 

B ‘Self’ 0 

C L1 11 

D L2 4 

E L1 16 

ROUTE 

Table @ node B 
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Distributed Routing: A Common Plan 
•  Determining live neighbors 

–  Common to both DV and LS protocols 
–  HELLO protocol (periodic)  

•  Send HELLO packet to each neighbor to let them know who’s at the 
end of their outgoing links 

•  Use received HELLO packets to build a list of neighbors containing 
an information tuple for each link: (timestamp, neighbor addr, link) 

•  Repeat periodically.  Don’t hear anything for a while → link is down, 
so remove from neighbor list. 

•  Advertisement step (periodic) 
–  Send some information to all neighbors 

–  Used to determine connectivity & costs to reachable nodes 

•  Integration step 
–  Compute routing table using info from advertisements 

–  Dealing with stale data 
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Distance-Vector Routing  
•  DV advertisement 

–  Send info from routing table entries: (dest, cost) 
–  Initially just (self,0) 

•  DV integration step [Bellman-Ford] 
–  For each (dest,cost) entry in neighbor’s advertisement 

•  Account for cost to reach neighbor: (dest,my_cost) 

•  my_cost = cost_in_advertisement + link_cost 

–  Are we currently sending packets for dest to this neighbor? 
•  See if link matches what we have in routing table 

•  If so, update cost in routing table to be my_cost 

–  Otherwise, is my_cost smaller than existing route? 
•  If so, neighbor is offering a better deal!  Use it… 

•  update routing table so that packets for dest are sent to this 
neighbor 
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DV Example: round 1 
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{‘B’: (None,0)}! {‘D’: (None,0)}!

{‘E’: (None,0)}!{‘C’: (None,0)}!

{‘A’: (None,0)}!
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Node A: update routes to BB, CC 
Node B: update routes to AA, CC, DD 
Node C: update routes to AA, BB, DD, EE 
Node D: update routes to BB, CC, EE 
Node E: update routes to CC, DD 

Subscript indicates node that gave 
better route 
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DV Example: round 2 
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{‘A’: (L0,19),!
 ‘B’: (None,0),!
 ‘C’: (L1,11),!
 ‘D’: (L2,4)!
}!

{‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L1,11),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19),!
 ‘C’: (L1,7)!
}!

Node A: update routes to BC, DC, EC 
Node B: update routes to AC, EC 
Node C: no updates 
Node D: update routes to AC 
Node E: update routes to AC, BC 
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DV Example: round 3 
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{‘A’: (L1,18),!
 ‘B’: (None,0),!
 ‘C’: (L1,11),!
 ‘D’: (L2,4),!
 ‘E’: (L1,16)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L0,16),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L1,11),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1,18),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!

Node A: no updates 
Node B: no updates 
Node C: no updates 
Node D: no updates 
Node E: no updates 
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DV Example: Break a Link 
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{‘A’: (L1,18),!
 ‘B’: (None,0),!
 ‘C’: (L1,11),!
 ‘D’: (L2,4),!
 ‘E’: (L1,16)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L0,16),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L1,11),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1,18),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!

When link breaks: eliminate routes 
that use that link. 
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DV Example: round 4 
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{‘A’: (None,∞),!
 ‘B’: (None,0),!
 ‘C’: (None,∞),!
 ‘D’: (L2,4),!
 ‘E’: (None,∞)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L0,16),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (None,∞),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1,18),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!
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Node A: update cost to BC 
Node B: update routes to AA, CD, ED 
Node C: update routes to BD 
Node D: no updates 
Node E: update routes to BD 
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DV Example: round 5 
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{‘A’: (L0,19),!
 ‘B’: (None,0),!
 ‘C’: (L2,19),!
 ‘D’: (L2,4),!
 ‘E’: (L2,17)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L1,17),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L2,19),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1, ∞),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!
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Node A: update route to BB 
Node B: no updates 
Node C: no updates 
Node D: no updates 
Node E: no updates 

Update cost 
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DV Example: final state 
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{‘A’: (L0,19),!
 ‘B’: (None,0),!
 ‘C’: (L2,19),!
 ‘D’: (L2,4),!
 ‘E’: (L2,17)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L1,17),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L2,19),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!
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Node A: no updates 
Node B: no updates 
Node C: no updates 
Node D: no updates 
Node E: no updates 
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Correctness & Performance 

•  Optimal substructure property fundamental to correctness of 
both Bellman-Ford and Dijkstra’s shortest path algorithms 
–  Suppose shortest path from X to Y goes through Z.  

Then, the sub-path from X to Z must be a shortest 
path. 

•  Proof of Bellman-Ford via induction on number of 
walks on shortest (min-cost) paths 
–  Easy when all costs > 0 and synchronous model (see notes) 
–  Harder with distributed async model (not in 6.02) 

•  How long does it take for distance-vector routing 
protocol to converge? 
–  Time proportional to largest number of hops 

considering all the min-cost paths 
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Link-State Routing 

•  Advertisement step 
–  Send information about its links to its neighbors (aka link 

state advertisement or LSA): 
 
    [seq#, [(nbhr1, linkcost1), (nbhr2, linkcost2), …] 
 

–  Do it periodically (liveness, recover from lost LSAs) 
•  Integration 

–  If seq# in incoming LSA > seq# in saved LSA for source node:  
    update LSA for node with new seq#, neighbor list 
    rebroadcast LSA to neighbors (→ flooding) 

–  Remove saved LSAs if seq# is too far out-of-date 
–  Result: Each node discovers current map of the network 

•  Build routing table 
–  Periodically each node runs the same shortest path algorithm 

over its map (e.g., Dijkstra’s alg) 
–  If each node implements computation correctly and each 

node has the same map, then routing tables will be correct 
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LSA Flooding 
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LSA: [F, seq, (G, 8), (C, 2)] 

•  Periodically originate LSA 

•  LSA travels each link in each direction 
–  Don’t bother with figuring out which link LSA came from 

•  Termination: each node rebroadcasts LSA exactly once 
–  Use sequence number to determine if new, save latest seq 

•  Multiple opportunities for each node to hear any given LSA 
–  Time required: number of links to cross network 
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Dijkstra’s Shortest Path Algorithm 
•  Initially 

–  nodeset = [all nodes] = set of nodes we haven’t processed 
–  spcost = {me:0, all other nodes: ∞}  # shortest path cost 

–  routes = {me:--, all other nodes: ?}  # routing table 

•  while nodeset isn’t empty: 
–  find u, the node in nodeset with smallest spcost 

–  remove u from nodeset 

–  for v in [u’s neighbors]: 
•  d = spcost(u) + cost(u,v)    # distance to v via u 

•  if d < spcost(v):                 # we found a shorter path! 

–  spcost[v] = d 

–  routes[v] = routes[u] (or if u == me, enter link from me to v) 

•  Complexity: N = number of nodes, L = number of links 
–  Finding u (N times): linear search=O(N), using heapq=O(log N) 

–  Updating spcost: O(L) since each link appears twice in neighbors 
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Integration Step: Dijkstra’s Algorithm  
(Example) 

Suppose we want to find paths from A to other nodes 
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Another Example 
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Step u Nodeset 
spcost route 

A B C D E A B C D E 

0 [A,B,C,D,E] 0 ∞ ∞ ∞ ∞ -- ? ? ? ? 

1 A [B,C,D,E] 0 19 7 ∞ ∞ -- L0 L1 ? ? 

2 C [B,D,E] 0 18 7 22 12 -- L1 L1 L1 L1 

3 E [B,D] 0 18 7 22 12 -- L1 L1 L1 L1 

4 B [D] 0 18 7 22 12 -- L1 L1 L1 L1 

5 D [] 0 18 7 22 12 -- L1 L1 L1 L1 

Finding shortest paths from A: 

LSAs: 
  A: [(B,19), (C, 7)] 
  B: [(A,19), (C,11), (D, 4)] 
  C: [(A, 7), (B,11), (D,15), (E, 5)] 
  D: [(B, 4), (C,15), (E,13)] 
  E: [(C, 5), (D,13)] 


