

The Problem: Distributed Methods for Finding Paths in Networks

- Addressing (how to name nodes?)
- Unique identifier for global addressing
- Link name for neighbors
- Forwarding (how does a switch process a packet?)
- Routing (building and updating data structures to ensure that forwarding works)
- Functions of the network layer
5.02 Fall 2011

Lecture 20, Slide \#2

Shortest Path Routing

- Each node wants to find the path with minimum total cost to other nodes

We use the term "shortest path" even though we're interested in min cost (and not min \#hops)

- Several possible distributed approaches
- Vector protocols, esp. distance vector (DV)
- Link-state protocols (LS)

Distance-Vector Routing

- DV advertisement
- Send info from routing table entries: (dest, cost)
- Initially just (self,0)
- DV integration step [Bellman-Ford]
- For each (dest,cost) entry in neighbor's advertisement
- Account for cost to reach neighbor: (dest,my_cost)
- my_cost = cost_in_advertisement + link_cost
- Are we currently sending packets for dest to this neighbor?
- See if link matches what we have in routing table
- If so, update cost in routing table to be my_cost
- Otherwise, is my_cost smaller than existing route?

If so, neighbor is offering a better deal! Use it..
update routing table so that packets for dest are sent to this neighbor

Distributed Routing: A Common Plan

- Determining live neighbors
- Common to both DV and LS protocols
- HELLO protocol (periodic)

Send HELLO packet to each neighbor to let them know who's at the end of their outgoing links
Use received HELLO packets to build a list of neighbors containing
an information tuple for each link: (timestamp, neighbor addr, link)

- Repeat periodically. Don't hear anything for a while \rightarrow link is down, so remove from neighbor list
- Advertisement step (periodic)
- Send some information to all neighbors
- Used to determine connectivity \& costs to reachable nodes
- Integration step
- Compute routing table using info from advertisements
- Dealing with stale data

DV Example: round 1

Node A : update routes to B_{B}, C_{C}
Node B: update routes to A_{A}, C_{C}
Node $\mathrm{B}:$ update routes to $\mathrm{A}_{\mathrm{A}}, \mathrm{C}_{\mathrm{C}}, \mathrm{D}_{\mathrm{D}}$
Node C: update routes to $\mathrm{A}_{\mathrm{A}}, \mathrm{B}_{\mathrm{B}}, \mathrm{D}_{\mathrm{D}}$,
 Node E : update routes to $\mathrm{C}_{\mathrm{C}}, \mathrm{D}_{\mathrm{D}}$
better route
6.02 Fall 2011

Lecture 20, Slide \#8

Node A: no updates
Node B: no updates
Node C: no updates
Node D: no updates
Node E: no updates

DV Example: round 3

6.02 Fall 2011

Correctness \& Performance

- Optimal substructure property fundamental to correctness of both Bellman-Ford and Dijkstra's shortest path algorithms
- Suppose shortest path from X to Y goes through Z. Then, the sub-path from X to Z must be a shortest path.
- Proof of Bellman-Ford via induction on number of walks on shortest (min-cost) paths
- Easy when all costs >0 and synchronous model (see notes)
- Harder with distributed async model (not in 6.02)
- How long does it take for distance-vector routing protocol to converge?
- Time proportional to largest number of hops considering all the min-cost paths

DV Example: final state

Node A: no updates
Node B: no updates
Node C: no updates
Node D: no updates
Node E: no updates

Link-State Routing

- Advertisement step
- Send information about its links to its neighbors (aka link Send information about its link
state advertisement or LSA):
[seq\#, [(nbhr1, linkcost1), (nbhr2, linkcost2), ...]
- Do it periodically (liveness, recover from lost LSAs)
- Integration
- If seq\# in incoming LSA > seq\# in saved LSA for source node update LSA for node with new seq\#, neighbor list
- Remove saved LSAs if seq\# is too far out-of-date
- Result: Each node discovers current map of the network
- Build routing table
- Periodically each node runs the same shortest path algorithm over its map (e.g., Dijkstra's alg)
- If each node implements computation correctly and each
node has the same map, then routing tables will be correct
6.02 Fall 2011

Lecture 20, Slide \#16

LSA Flooding

LSA: [F, seq, (G, 8), (C, 2)]

- Periodically originate LSA
- LSA travels each link in each direction
- Don't bother with figuring out which link LSA came from
- Termination: each node rebroadcasts LSA exactly once
- Use sequence number to determine if new, save latest seq
- Multiple opportunities for each node to hear any given LSA
- Time required: number of links to cross network
6.02 Fall 2011

Dijkstra's Shortest Path Algorithm

- Initially
- nodeset $=[$ all nodes $]=$ set of nodes we haven't processed
- spcost $=\{$ me:0, all other nodes: $\infty\}$ \# shortest path cost
- routes = \{me:--, all other nodes: ?\} \# routing table
- while nodeset isn't empty:
- find u, the node in nodeset with smallest spcost
- remove u from nodeset
- for v in [u's neighbors]:

$$
\begin{array}{ll}
\text { - } \mathrm{d}=\operatorname{spcost}(\mathrm{u})+\operatorname{cost}(\mathrm{u}, \mathrm{v}) & \text { \# distance to } \mathrm{v} \text { via } \mathrm{u} \\
\text { - if } \mathrm{d}<\operatorname{spcost}(\mathrm{v}): & \text { \# we found a shorter path! }
\end{array}
$$

- routes $[v]=$ routes $[u]$ (or if $u==$ me, enter link from me to v)
- Complexity: $\mathrm{N}=$ number of nodes, $\mathrm{L}=$ number of links
- Finding u (N times): linear search $=\mathrm{O}(\mathrm{N})$, using heapq= $\mathrm{O}(\log \mathrm{N})$
- Updating spcost: $\mathrm{O}(\mathrm{L})$ since each link appears twice in neighbors
6.02 Fall 2011

Lecture 20, Slide \#18

Integration Step: Dijkstra's Algorithm (Example)

Suppose we want to find paths from A to other nodes

6.02 Fall 2011

Lecture 20, Slide \#19

Another Example

Finding shortest paths from A:
LSAs:
A: $[(B, 19),(C, 7)]$
B: $[(A, 19),(C, 11),(D, 4)]$
D: $\left[(B, 4),\left(\begin{array}{l}(\mathrm{C}, 11), \\ (\mathrm{D}, 15) \\ (\mathrm{E}, 13)]\end{array}\right.\right.$
E: [(C, 5), (D,13)]
(E, 5)]

Step	u	Nodeset	spcost					route				
			A	B	C	D	E	A	B	C	D	E
0		[A,B,C,D,E]	0	∞	∞	∞	∞	--	?	?	?	?
1	A	[B,C,D,E]	0	19	7	∞	∞	--	L0	L1	?	?
2	C	[B,D,E]	0	18	7	22	12	--	L1	L1	L1	L1
3	E	[B,D]	0	18	7	22	12	--	L1	L1	L1	L1
4	B	[D]	0	18	7	22	12	--	L1	L1	L1	L1
5	D	[]	0	18	7	22	12	--	L1	L1	L1	L1

6.02 Fall 2011

Lecture 20, Slide \#20

