
11/20/11

1

6.02 Fall 2011 Lecture 20, Slide #1

6.02 Fall 2011
Lecture #20

•  addressing, forwarding, routing
•  liveness, advertisements, integration
•  distance-vector routing
•  routing loops, counting to infinity

6.02 Fall 2011 Lecture 20, Slide #2

The Problem: Distributed Methods for
Finding Paths in Networks

•  Addressing (how to name nodes?)
–  Unique identifier for global addressing
–  Link name for neighbors

•  Forwarding (how does a switch process a packet?)

•  Routing (building and updating data structures to ensure
that forwarding works)

•  Functions of the network layer

B

C

D

E

A

L2

L1

L0

11 13 15

19

7

4

Link costs

5

6.02 Fall 2011 Lecture 20, Slide #3

Forwarding

•  Core function is conceptually simple
–  lookup(dst_addr) in routing table returns route (i.e., outgoing

link) for packet
–  enqueue(packet, link_queue)
–  send(packet) along outgoing link

•  And do some bookkeeping before enqueue
–  Decrement hop limit (TTL); if 0, discard packet
–  Recalculate checksum (in IP, header checksum)

Switch

6.02 Fall 2011 Lecture 20, Slide #4

B

C

D

E

A

4

11

5

13

Shortest Path Routing

•  Each node wants to find the path with minimum total cost
to other nodes
–  We use the term “shortest path” even though we’re interested

in min cost (and not min #hops)

•  Several possible distributed approaches
–  Vector protocols, esp. distance vector (DV)
–  Link-state protocols (LS)

15

19

7
(Assume all costs ≥ 0)

11/20/11

2

6.02 Fall 2011 Lecture 20, Slide #5

Routing Table Structure

Destination Link (next-hop) Cost

A L1 18

B ‘Self’ 0

C L1 11

D L2 4

E L1 16

ROUTE

Table @ node B

B

C

D

E

A

4

11

5

13 15

19

7

L2

L1

L0

6.02 Fall 2011 Lecture 20, Slide #6

Distributed Routing: A Common Plan
•  Determining live neighbors

–  Common to both DV and LS protocols
–  HELLO protocol (periodic)

•  Send HELLO packet to each neighbor to let them know who’s at the
end of their outgoing links

•  Use received HELLO packets to build a list of neighbors containing
an information tuple for each link: (timestamp, neighbor addr, link)

•  Repeat periodically. Don’t hear anything for a while → link is down,
so remove from neighbor list.

•  Advertisement step (periodic)
–  Send some information to all neighbors

–  Used to determine connectivity & costs to reachable nodes

•  Integration step
–  Compute routing table using info from advertisements

–  Dealing with stale data

6.02 Fall 2011 Lecture 20, Slide #7

Distance-Vector Routing
•  DV advertisement

–  Send info from routing table entries: (dest, cost)
–  Initially just (self,0)

•  DV integration step [Bellman-Ford]
–  For each (dest,cost) entry in neighbor’s advertisement

•  Account for cost to reach neighbor: (dest,my_cost)

•  my_cost = cost_in_advertisement + link_cost

–  Are we currently sending packets for dest to this neighbor?
•  See if link matches what we have in routing table

•  If so, update cost in routing table to be my_cost

–  Otherwise, is my_cost smaller than existing route?
•  If so, neighbor is offering a better deal! Use it…

•  update routing table so that packets for dest are sent to this
neighbor

6.02 Fall 2011 Lecture 20, Slide #8

DV Example: round 1

B

C

D

E

A

4

11

5

13 15

19

7

{‘B’: (None,0)}! {‘D’: (None,0)}!

{‘E’: (None,0)}!{‘C’: (None,0)}!

{‘A’: (None,0)}!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

Node A: update routes to BB, CC
Node B: update routes to AA, CC, DD
Node C: update routes to AA, BB, DD, EE
Node D: update routes to BB, CC, EE
Node E: update routes to CC, DD

Subscript indicates node that gave
better route

11/20/11

3

6.02 Fall 2011 Lecture 20, Slide #9

DV Example: round 2

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (L0,19),!
 ‘B’: (None,0),!
 ‘C’: (L1,11),!
 ‘D’: (L2,4)!
}!

{‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L1,11),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19),!
 ‘C’: (L1,7)!
}!

Node A: update routes to BC, DC, EC
Node B: update routes to AC, EC
Node C: no updates
Node D: update routes to AC
Node E: update routes to AC, BC

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

6.02 Fall 2011 Lecture 20, Slide #10

DV Example: round 3

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (L1,18),!
 ‘B’: (None,0),!
 ‘C’: (L1,11),!
 ‘D’: (L2,4),!
 ‘E’: (L1,16)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L0,16),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L1,11),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1,18),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!

Node A: no updates
Node B: no updates
Node C: no updates
Node D: no updates
Node E: no updates

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

6.02 Fall 2011 Lecture 20, Slide #11

DV Example: Break a Link

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (L1,18),!
 ‘B’: (None,0),!
 ‘C’: (L1,11),!
 ‘D’: (L2,4),!
 ‘E’: (L1,16)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L0,16),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L1,11),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1,18),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!

When link breaks: eliminate routes
that use that link.

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

×

6.02 Fall 2011 Lecture 20, Slide #12

DV Example: round 4

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (None,∞),!
 ‘B’: (None,0),!
 ‘C’: (None,∞),!
 ‘D’: (L2,4),!
 ‘E’: (None,∞)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L0,16),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (None,∞),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1,18),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

×

Node A: update cost to BC
Node B: update routes to AA, CD, ED
Node C: update routes to BD
Node D: no updates
Node E: update routes to BD

11/20/11

4

6.02 Fall 2011 Lecture 20, Slide #13

DV Example: round 5

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (L0,19),!
 ‘B’: (None,0),!
 ‘C’: (L2,19),!
 ‘D’: (L2,4),!
 ‘E’: (L2,17)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L1,17),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L2,19),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1, ∞),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

×

Node A: update route to BB
Node B: no updates
Node C: no updates
Node D: no updates
Node E: no updates

Update cost

6.02 Fall 2011 Lecture 20, Slide #14

DV Example: final state

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (L0,19),!
 ‘B’: (None,0),!
 ‘C’: (L2,19),!
 ‘D’: (L2,4),!
 ‘E’: (L2,17)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L1,17),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L2,19),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

×

Node A: no updates
Node B: no updates
Node C: no updates
Node D: no updates
Node E: no updates

6.02 Fall 2011 Lecture 20, Slide #15

Correctness & Performance

•  Optimal substructure property fundamental to correctness of
both Bellman-Ford and Dijkstra’s shortest path algorithms
–  Suppose shortest path from X to Y goes through Z.

Then, the sub-path from X to Z must be a shortest
path.

•  Proof of Bellman-Ford via induction on number of
walks on shortest (min-cost) paths
–  Easy when all costs > 0 and synchronous model (see notes)
–  Harder with distributed async model (not in 6.02)

•  How long does it take for distance-vector routing
protocol to converge?
–  Time proportional to largest number of hops

considering all the min-cost paths

6.02 Fall 2011 Lecture 20, Slide #16

Link-State Routing

•  Advertisement step
–  Send information about its links to its neighbors (aka link

state advertisement or LSA):

 [seq#, [(nbhr1, linkcost1), (nbhr2, linkcost2), …]

–  Do it periodically (liveness, recover from lost LSAs)
•  Integration

–  If seq# in incoming LSA > seq# in saved LSA for source node:
 update LSA for node with new seq#, neighbor list
 rebroadcast LSA to neighbors (→ flooding)

–  Remove saved LSAs if seq# is too far out-of-date
–  Result: Each node discovers current map of the network

•  Build routing table
–  Periodically each node runs the same shortest path algorithm

over its map (e.g., Dijkstra’s alg)
–  If each node implements computation correctly and each

node has the same map, then routing tables will be correct

11/20/11

5

6.02 Fall 2011 Lecture 20, Slide #17

LSA Flooding

A

B

C

D

E

6

6

5

4

0

7

F

G

2

2

8

LSA: [F, seq, (G, 8), (C, 2)]

•  Periodically originate LSA

•  LSA travels each link in each direction
–  Don’t bother with figuring out which link LSA came from

•  Termination: each node rebroadcasts LSA exactly once
–  Use sequence number to determine if new, save latest seq

•  Multiple opportunities for each node to hear any given LSA
–  Time required: number of links to cross network

6.02 Fall 2011 Lecture 20, Slide #18

Dijkstra’s Shortest Path Algorithm
•  Initially

–  nodeset = [all nodes] = set of nodes we haven’t processed
–  spcost = {me:0, all other nodes: ∞} # shortest path cost

–  routes = {me:--, all other nodes: ?} # routing table

•  while nodeset isn’t empty:
–  find u, the node in nodeset with smallest spcost

–  remove u from nodeset

–  for v in [u’s neighbors]:
•  d = spcost(u) + cost(u,v) # distance to v via u

•  if d < spcost(v): # we found a shorter path!

–  spcost[v] = d

–  routes[v] = routes[u] (or if u == me, enter link from me to v)

•  Complexity: N = number of nodes, L = number of links
–  Finding u (N times): linear search=O(N), using heapq=O(log N)

–  Updating spcost: O(L) since each link appears twice in neighbors

6.02 Fall 2011 Lecture 20, Slide #19

A

B

C

D

E

6

6

5

4

0

7

F

G

2

2

8

(6)

(6)

(8)

(10)

(13) (16)

Integration Step: Dijkstra’s Algorithm
(Example)

Suppose we want to find paths from A to other nodes

C

(12)

B

F A

(0)

(11)
(10)

E

D G

6.02 Fall 2011 Lecture 20, Slide #20

Another Example

B

C

D

E

A

4

11

5

13 15

19

7

Step u Nodeset
spcost route

A B C D E A B C D E

0 [A,B,C,D,E] 0 ∞ ∞ ∞ ∞ -- ? ? ? ?

1 A [B,C,D,E] 0 19 7 ∞ ∞ -- L0 L1 ? ?

2 C [B,D,E] 0 18 7 22 12 -- L1 L1 L1 L1

3 E [B,D] 0 18 7 22 12 -- L1 L1 L1 L1

4 B [D] 0 18 7 22 12 -- L1 L1 L1 L1

5 D [] 0 18 7 22 12 -- L1 L1 L1 L1

Finding shortest paths from A:

LSAs:
 A: [(B,19), (C, 7)]
 B: [(A,19), (C,11), (D, 4)]
 C: [(A, 7), (B,11), (D,15), (E, 5)]
 D: [(B, 4), (C,15), (E,13)]
 E: [(C, 5), (D,13)]

