The Problem: Distributed Methods for Finding Paths in Networks

- Addressing (how to name nodes?)
 - Unique identifier for global addressing
 - Link name for neighbors
- Forwarding (how does a switch process a packet?)
- Routing (building and updating data structures to ensure that forwarding works)
- Functions of the network layer

Forwarding

- Core function is conceptually simple
 - `lookup(dst_addr)` in routing table returns route (i.e., outgoing link) for packet
 - `enqueue(packet, link_queue)`
 - `send(packet)` along outgoing link
- And do some bookkeeping before enqueue
 - Decrement hop limit (TTL); if 0, discard packet
 - Recalculate checksum (in IP, header checksum)

Shortest Path Routing

- Each node wants to find the path with minimum total cost to other nodes
 - We use the term “shortest path,” even though we’re interested in min cost (and not min #hops)
- Several possible distributed approaches
 - Vector protocols, esp. distance vector (DV)
 - Link-state protocols (LS)
Routing Table Structure

<table>
<thead>
<tr>
<th>Destination</th>
<th>Link (next-hop)</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>L1</td>
<td>18</td>
</tr>
<tr>
<td>B</td>
<td>Self</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>L1</td>
<td>11</td>
</tr>
<tr>
<td>D</td>
<td>L2</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>L1</td>
<td>16</td>
</tr>
</tbody>
</table>

Table @ node B

Distributed Routing: A Common Plan

- Determining live neighbors
 - Common to both DV and LS protocols
 - HELLO protocol (periodic)
 - Send HELLO to each neighbor to let them know who’s at the end of their outgoing links
 - Use received HELLO packets to build a list of neighbors containing an information tuple for each link: (timestamp, neighbor addr, link)
 - Repeat periodically. Don’t hear anything for a while → link is down, so remove from neighbor list.
- Advertisement step (periodic)
 - Send some information to all neighbors
 - Used to determine connectivity & costs to reachable nodes
- Integration step
 - Compute routing table using info from advertisements
 - Dealing with stale data

Distance-Vector Routing

- DV advertisement
 - Send info from routing table entries: (dest, cost)
 - Initially just (self,0)
- DV integration step [Bellman-Ford]
 - For each (dest, cost) entry in neighbor’s advertisement
 - Account for cost to reach neighbor: (dest, my_cost)
 - my_cost = cost_in_advertisement + link_cost
 - Are we currently sending packets for dest to this neighbor?
 - See if link matches what we have in routing table
 - If so, update cost in routing table to be my_cost
 - Otherwise, is my_cost smaller than existing route?
 - If so, neighbor is offering a better deal! Use it…
 - Update routing table so that packets for dest are sent to this neighbor

DV Example: round 1

Node A: update routes to B, C
Node B: update routes to A, C
Node C: update routes to A, D, E
Node D: update routes to B, C, E
Node E: update routes to C, D

Subscript indicates node that gave better route
DV Example: round 2

Node A: update routes to B, C, E
Node B: update routes to C, D
Node C: no updates
Node D: update routes to A
Node E: update routes to A

DV Example: round 3

Node A: no updates
Node B: no updates
Node C: no updates
Node D: no updates
Node E: no updates

DV Example: round 4

Node A: update cost to B
Node B: update routes to A, C, D, E
Node C: update routes to B
Node D: no updates
Node E: update routes to B

DV Example: Break a Link

When link breaks: eliminate routes that use that link.
Correctness & Performance

- Optimal substructure property fundamental to correctness of both Bellman-Ford and Dijkstra’s shortest path algorithms
 - Suppose shortest path from X to Y goes through Z. Then, the sub-path from X to Z must be a shortest path.
- Proof of Bellman-Ford via induction on number of walks on shortest (min-cost) paths
 - Easy when all costs \(> 0 \) and synchronous model (see notes)
 - Harder with distributed async model (not in 6.02)
- How long does it take for distance-vector routing protocol to converge?
 - Time proportional to largest number of hops considering all the min-cost paths

Link-State Routing

- Advertisement step
 - Send information about its links to its neighbors (aka link state advertisement or LSA):
 - \([\text{seq}#, \{\text{nbhr1, linkcost1}\}, \{\text{nbhr2, linkcost2}\}, ...]\)
 - Do it periodically (liveness, recover from lost LSAs)
- Integration
 - If seq# in incoming LSA \(> \) seq# in saved LSA for source node:
 - Update LSA for node with new seq#, neighbor list
 - Remove saved LSAs if seq# is too far out-of-date
- Result: Each node discovers current map of the network
- Build routing table
 - Periodically each node runs the same shortest path algorithm over its map (e.g., Dijkstra’s alg)
 - If each node implements computation correctly and each node has the same map, then routing tables will be correct
LSA Flooding

- Periodically originate LSA
- LSA travels each link in each direction
 - Don’t bother with figuring out which link LSA came from
- Termination: each node rebroadcasts LSA exactly once
 - Use sequence number to determine if new, save latest seq
- Multiple opportunities for each node to hear any given LSA
 - Time required: number of links to cross network

Dijkstra’s Shortest Path Algorithm

- Initially
 - nodeset = [all nodes] = set of nodes we haven’t processed
 - spcost = {me:0, all other nodes: ∞} # shortest path cost
 - routes = {me:--, all other nodes: ?} # routing table
- while nodeset isn’t empty:
 - find u, the node in nodeset with smallest spcost
 - remove u from nodeset
 - for v in [u’s neighbors]:
 - d = spcost(u) + cost(u,v) # distance to v via u
 - if d < spcost(v): # we found a shorter path!
 - spcost[v] = d
 - routes[v] = routes[u] (or if u == me, enter link from me to v)
- Complexity: N = number of nodes, L = number of links
 - Finding u (N times): linear search=O(N), using heapq=O(log N)
 - Updating spcost: O(L) since each link appears twice in neighbors

Find the shortest paths from A:

LSAs:
A: [(B, 19), (C, 7)]
B: [(A, 19), (C, 11), (D, 41)]
C: [(A, 7), (B, 11), (D, 15), (E, 5)]
D: [(B, 41), (C, 15), (E, 13)]
E: [(C, 5), (D, 13)]

Finding shortest paths from A:

Another Example

Finding shortest paths from A: