
11/30/11

1

6.02 Fall 2011 Lecture 22, Slide #1

6.02 Fall 2011
Lecture #22

• Redundancy via careful retransmission
• Sequence numbers & acks
• RTT estimation and timeouts
• Stop-and-wait protocol

6.02 Fall 2011 Lecture 22, Slide #2

The Problem

•  Given: Best-effort network in which
–  Packets may be lost arbitrarily
–  Packets may be reordered arbitrarily

–  Packet delays are variable (queueing)

–  Packets may even be duplicated

•  Sender S and receiver R want to communicate reliably
–  Application at R wants all data bytes in exactly the same

order that S sent them
–  Each byte must be delivered exactly once

•  These functions are provided by a reliable transport
protocol
–  Application “layered above” transport protocol

6.02 Fall 2011 Lecture 22, Slide #3

Proposed Plan
•  Transmitter

–  Each packet includes a sequentially increasing sequence number
–  When transmitting, save (xmit time,packet) on un-ACKed list

–  When acknowledgement (ACK) is received from the destination
for a particular sequence number, remove the corresponding
entry from un-ACKed list

–  Periodically check un-ACKed list for packets sent awhile ago
•  Retransmit, update xmit time in case we have to do it again!

•  “awhile ago”: xmit time < now － timeout

•  Receiver
–  Send ACK for each received packet, reference sequence number

–  Deliver packet payload to application

6.02 Fall 2011 Lecture 22, Slide #4

Stop and Wait Protocol

 1
RTT

Sender Receiver
Data 1

Data 2

ACK 1

Normal behavior
(no losses)

ACK 2

Data 3

ACK 3

Data 1

X

Data 1

Timeout
Retransmit

Data 1

X

Data 1

S R S R

Data loss +
retransmission

Duplicate
packet reception

R
T
T
 =

 r
ou

n
d
-t

ri
p
 t

im
e

Wanted “exactly once”, got “at least once”

11/30/11

2

6.02 Fall 2011 Lecture 22, Slide #5

Revised Plan
•  Transmitter

–  Each packet includes a sequentially increasing sequence number
–  When transmitting, save (xmit time,packet) on un-ACKed list

–  When acknowledgement (ACK) is received from the destination
for a particular sequence number, remove the corresponding
entry from un-ACKed list

–  Periodically check un-ACKed list for packets sent awhile ago
•  Retransmit, update xmit time in case we have to do it again!

•  “awhile ago”: xmit time < now － timeout

•  Receiver
–  Send ACK for each received packet, reference sequence number

–  Deliver packet payload to application in sequence number order
•  By keeping track of next sequence number to be delivered to app, it’s

easy to recognize duplicate packets and not deliver them a second
time.

6.02 Fall 2011 Lecture 22, Slide #6

Issues
•  Protocol must handle lost packets correctly

–  Lost data: retransmission will provide missing data
–  Lost ACK: retransmission will trigger another ACK from receiver

•  Size of packet buffers
–  At transmitter

•  Buffer holds un-ACKed packets

•  Stop transmitting if buffer space an issue

–  At receiver
•  Buffer holds packets received out-of-order

•  Stop ACKing if buffer space an issue

•  Choosing timeout value: related to RTT
–  Too small: unnecessary retransmissions

–  Too large: poor throughput
•  Delivery stalled while waiting for missing packets

6.02 Fall 2011 Lecture 22, Slide #7

RTT Measurements

6.02 Fall 2011 Lecture 22, Slide #8

!"#$%&'(%

)!
!%
&#

'(
%

RTTs can be highly variable
Data from Verizon Wireless 3G network

mu: 1554.8 ms
sd: 1563.8 ms
min: 82.5 ms
max: 9912.4 ms

11/30/11

3

6.02 Fall 2011 Lecture 22, Slide #9 9

Ping
latency

D
el

a
y

(m
il
li
se

co
n

d
s)

AT&T Wireless on iPhone 3G

mu: 1697.2 ms
sd: 2346.5 ms
min:155.6 ms
max:12126.6 ms

Time (s) 6.02 Fall 2011 Lecture 22, Slide #10 http://nms.csail.mit.edu/papers/index.php?detail=208

6.02 Fall 2011 Lecture 22, Slide #11

CDF of RTT over Verizon Wireless 3G Network
Cumulative probability (CDF)

2000 4000 6000 RTT value (ms)

Mean > 1.5 seconds
Std dev > 1.5 seconds

If we pick timeout
of 6 seconds, then
P(spurious rxmit) is
about 3%.

6.02 Fall 2011 Lecture 22, Slide #12

Estimating RTT from Data
•  Gather samples of RTT by comparing time when ACK arrives

with time corresponding packet was transmitted
–  Sample of random variable with some unknown distribution (not

necessarily Gaussian!)

•  Chebyshev’s Inequatility tells us that for a random variable X
with mean μ and finite variance σ2:

–  To minimize the chance of unnecessary retransmissions – packet
wasn’t lost, just the round trip time for packet/ACK was long –
we want our timeout to be greater than most observed RTTs.

–  So choose a k that makes the chances small…

–  We need an estimate for μ and σ

prob(X !µ " k!) # 1
k2

11/30/11

4

6.02 Fall 2011 Lecture 22, Slide #13

Exponential Weighted Moving Average (EWMA)
LPF Frequency Response

H

Ω

α decreases

srtt ← α*rtt_sample + (1-α)*srtt

6.02 Fall 2011 Lecture 22, Slide #14

α = 0.1 α = 0.5
Responds too quickly?

Response to One Long RTT Sample

6.02 Fall 2011 Lecture 22, Slide #15

RTT changes from 1 to 2

α = 0.1 α = 0.5

Doesn’t respond quickly enough?

6.02 Fall 2011 Lecture 22, Slide #16

Timeout Algorithm

•  EWMA for smoothed RTT (srtt)
–  srtt ← α*rtt_sample + (1-α)*srtt
–  Typically 0.1 ≤ α ≤ 0.25 on networks prone to congestion.

TCP uses α=0.125.

•  Use another EWMA for smoothed RTT deviation (srttdev)
–  Mean linear deviation easy to compute (but could also do std

deviation)

–  dev_sample = |rtt_sample – srtt|

–  srttdev ← β*dev_sample + (1-β)*srttdev,

•  Retransmit Timeout
–  timeout = srtt + k·srttdev

–  k = 4 for TCP

–  Makes the “tail probability” of a spurious retransmission low

11/30/11

5

6.02 Fall 2011 Lecture 22, Slide #17

Throughput of Stop-and-Wait
•  We want to calculate the expected time, T between successful

deliveries of packets. Throughput = 1/T.

•  We can’t just assume T = RTT because packets get lost
–  Suppose there are N links in the round trip between sender and

receiver

–  If the per-link probability of losing a packet is p, then the
probability it’s delivered over the link is (1-p), and thus the
probability it’s delivered over N links is (1-p)N.

–  So the probability a packet/ACK gets lost is L = 1 – (1-p)N.

•  Now we can write an equation for T:

T = (1! L) "RTT + L " timeout +T()

= RTT + L
1! L

timeout

6.02 Fall 2011 Lecture 22, Slide #18

The Best Case
•  Occurs when RTT is the same for every packet, so

timeout = RTT

•  If bottleneck link can support 100 packets/sec and the RTT
is 100 ms, then, using stop-and-wait, the maximum
throughput is at most only 10 packets/sec.

–  Urk! Only 10% of the capacity of the channel.

–  We need a better reliable transmission protocol…

T = RTT + L
1! L

RTT = 1
1! L

RTT

Throughput = (1! L)
RTT

6.02 Fall 2011 Lecture 22, Slide #19

Idea: Sliding Window Protocol

•  Use a window
–  Allow W packets outstanding (i.e.,

unack’d) in the network at once
(W is called the window size).

–  Overlap transmissions with ACKs

•  Sender advances the window by 1 for
each in-sequence ack it receives
–  I.e., window slides
–  So, idle period reduces
–  Pipelining

•  Assume that the window size, W, is
fixed and known
–  Later, we will discuss how one might

set it
–  W = 3 in the example on the left

SENDER RECEIVER

6.02 Fall 2011 Lecture 22, Slide #20

Sndr

Rcvr

window = 1-5

1 2 3 4 5

p1

a1

6

Sliding Window in Action

window = 2-6

a2

p2

W = 5 in this example

11/30/11

6

6.02 Fall 2011 Lecture 22, Slide #21

Sndr

Rcvr

1 2 3 4 5

p1

a1

6

a3

p3

Sliding Window in Action

window = 3-7

a2

p2

7

window = 2-6

Window definition: If window is W, then max number of
unacknowledged packets is W

This is a fixed-size sliding window

6.02 Fall 2011 Lecture 22, Slide #22

Sliding Window Implementation
•  Transmitter

–  Each packet includes a sequentially increasing sequence number
–  When transmitting, save (xmit time,packet) on un-ACKed list

–  Transmit packets if len(un-ACKed list) ≤ window size W

–  When acknowledgement (ACK) is received from the destination
for a particular sequence number, remove the corresponding
entry from un-ACKed list

–  Periodically check un-ACKed list for packets sent awhile ago
•  Retransmit, update xmit time in case we have to do it again!

•  “awhile ago”: xmit time < now － timeout

•  Receiver
–  Send ACK for each received packet, reference sequence number

–  Deliver packet payload to application in sequence number order
•  Save delivered packets in sequence number order in local buffer

(remove duplicates). Discard incoming packets which have already
been delivered (caused by retransmission due to lost ACK).

•  Keep track of next packet application expects. After each reception,
deliver as many in-order packets as possible.

