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6.02 Fall 2011 
Lecture #23 

• Redundancy via careful retransmission 
• Sequence numbers & acks 
• RTT estimation and timeouts 
• Stop-and-wait protocol 
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Sliding Window Protocol 

•  Use a window 
–  Allow W packets outstanding (i.e., 

unack’d) in the network at once 
(W is called the window size). 

–  Overlap transmissions with ACKs 

•  Sender advances the window by 1 for 
each in-sequence ack it receives 
–  I.e., window slides 
–  So, idle period reduces 
–  Pipelining 

•  Assume that the window size, W, is 
fixed and known 
–  Later, we will discuss how one might 

set it 
–  W = 3 in the example on the left 

SENDER RECEIVER 
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W = 5 in this example 
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Window definition: If window is W, then max number of 
unacknowledged packets is W  

This is a fixed-size sliding window 
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Sliding Window: Handling Packet Loss 
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The receiver ACKs a packet after getting it. The receiver must save 
packets 3 through 10 until packet 2 arrives, which will allow it to 
deliver packets 2 through 10 to the receiving application. Note that 
with this definition of the window, there’s no limit to the number of 
packets that might arrive out of order.  
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Sliding Window: Handling Packet Loss 
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Sender’s  window size = 5 
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•  If we can get “Idle” to 0, will 
achieve goal 

•  W = #packets in window 
•  B = rate of slowest (bottleneck) link 
•  RTT = avg delay 

•  If W = B·RTT, path will be fully 
utilized 
–  The “bandwidth-delay 

product” 
–  Key concept in transport 

protocols 

Host A Host B 

Send? 

OK, 3 pkts 

Idle 

Setting the Window Size:  
Apply Little’s Law 
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Throughput of Sliding Window Protocol 
•  If there are no lost packets, protocol delivers W packets every 

RTT seconds, so throughput is W/RTT. 
–  Maximum throughput is also limited by rate of bottleneck link 

(B): throughput = min(B, W/RTT) 

•  Goal: select W so that (slowest) links are never idle due to 
lack of packets 
–  Avoid overfilling queues since that increases packet latency and, 

if timeouts are triggered, possibility of spurious retransmissions. 
•  Measured RTT includes queuing delay = RTTmin + Qdelay 

•  As Qdelay increases, so does W, which increases Qdelay, … 

•  Use B·RTTmin when calculating W 

–  Slightly larger than B·RTTmin to ensure bottleneck link is busy 
even if there are packet losses 

•  Total expected # of transmissions, T, for successful delivery 
   T = 1 + L·(1 + L·(1+…)) = 1 + L + L2 + …  = 1/(1－L) 
where L = 1-(1-per_link_loss)#hops_in_roundtrip is the round-trip loss rate. 

•  Throughput is 1/T = 1－L = (1－p)#_hops_in_roundtrip 
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Sliding Window Implementation 
•  Transmitter 

–  Each packet includes a sequentially increasing sequence number 
–  When transmitting, save (xmit time,packet) on un-ACKed list 

–  Transmit packets if len(un-ACKed list) ≤ window size W 

–  When acknowledgement (ACK) is received from the destination 
for a particular sequence number, remove the corresponding 
entry from un-ACKed list 

–  Periodically check un-ACKed list for packets sent awhile ago 
•  Retransmit, update xmit time in case we have to do it again! 

•  “awhile ago”: xmit time < now － timeout 

•  Receiver 
–  Send ACK for each received packet, reference sequence number 

–  Deliver packet payload to application in sequence number order 
•  Save delivered packets in sequence number order in local buffer 

(remove duplicates).  Discard incoming packets which have already 
been delivered (caused by retransmission due to lost ACK). 

•  Keep track of next packet application expects.  After each reception, 
deliver as many in-order packets as possible. 
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Example 

Q: The sender’s window size is 10 packets.  At what 
approximate rate (in packets per second) will the protocol 
deliver a multi-gigabyte file from the sender to the receiver? 
Assume that there is no other traffic in the network and 
packets can only be lost because the queues overflow. 

A: 10 packets / 21 ms, ~500 packets/s (actually 476 or so) 
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Example (cont.) 

Q: You would like to roughly 
double the throughput of this 
sliding window transport protocol. 
To do so, you can apply one of the 
following techniques: 
a.  Double window size W 
b.  Halve the propagation delay of 

the links 
c.  Double the speed of the link 

between the Switch and 
Receiver. 

Q: For each of the following sender window sizes (in packets), 
list which of the above technique(s), if any, can approximately 
double the throughput:  W=10, W=50, W=30. 
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Solutions to Example 
•  Note that BW-delay product on given path = 20 packets 

•  W=10 
–  Doubling window size ~doubles throughput (BW-delay product is 

20 on path) 

–  Halving RTT ~doubles throughput (since now BW-delay product 
would be 10, equal to window size) 

–  Doubling bottleneck link speed won’t change the throughput! 

•  W=50 
–  Doubling window size won’t change throughput (we’re already 

saturating the bottleneck link) 

–  Halving RTT won’t change throughput (same reason) 

–  Doubling bottleneck link speed will ~double throughput because 
new bw-delay product doubles to 40, and W=50 > 40 

•  W=30 (trickiest case) 
–  Doubling window size or halving RTT: no effect 

–  Doubling bottleneck link changes BW-delay product to 40.  W is 
still lower than 40, so throughput won’t double. But it’ll certainly 
increase, by perhaps about 50% more from before 


