
12/5/11

1

6.02 Fall 2011 Lecture 23, Slide #1

6.02 Fall 2011
Lecture #23

• Redundancy via careful retransmission
• Sequence numbers & acks
• RTT estimation and timeouts
• Stop-and-wait protocol

6.02 Fall 2011 Lecture 23, Slide #2

Sliding Window Protocol

•  Use a window
–  Allow W packets outstanding (i.e.,

unack’d) in the network at once
(W is called the window size).

–  Overlap transmissions with ACKs

•  Sender advances the window by 1 for
each in-sequence ack it receives
–  I.e., window slides
–  So, idle period reduces
–  Pipelining

•  Assume that the window size, W, is
fixed and known
–  Later, we will discuss how one might

set it
–  W = 3 in the example on the left

SENDER RECEIVER

6.02 Fall 2011 Lecture 23, Slide #3

Sndr

Rcvr

window = 1-5

1 2 3 4 5

p1

a1

6

Sliding Window in Action

window = 2-6

a2

p2

W = 5 in this example

6.02 Fall 2011 Lecture 23, Slide #4

Sndr

Rcvr

1 2 3 4 5

p1

a1

6

a3

p3

Sliding Window in Action

window = 3-7

a2

p2

7

window = 2-6

Window definition: If window is W, then max number of
unacknowledged packets is W

This is a fixed-size sliding window

12/5/11

2

6.02 Fall 2011 Lecture 23, Slide #5

Sndr

Rcvr

window = 1-5

1 2 3 4 5

p1

a1

x

6

a3

p3

window = 2-6

Sliding Window: Handling Packet Loss

6.02 Fall 2011 Lecture 23, Slide #6

Sndr

1 2 3 4 5

p1

a1

x

6

a3

p3

a8

p4

Timeout

2 7 8 9 10

Rcvr

The receiver ACKs a packet after getting it. The receiver must save
packets 3 through 10 until packet 2 arrives, which will allow it to
deliver packets 2 through 10 to the receiving application. Note that
with this definition of the window, there’s no limit to the number of
packets that might arrive out of order.

p7

a6

p6

a5

p5

a2

p2

a7 a9

p8 p9 p10

a10 a4

Sliding Window: Handling Packet Loss

6.02 Fall 2011 Lecture 23, Slide #7

Sender
Receiver

1
2
3
4
5

6
7
8
9
10

X

1
2
3
4
5

6
7

9
10

11
12

13

14
8

11
12

13
8

T
IM

E
O

U
T

RXMIT

ACKs

Packet lost

Sender’s window size = 5

6.02 Fall 2011 Lecture 23, Slide #8

 560

 580

 600

 620

 640

 660

 680

 800 820 840 860 880 900

"trace2-seq"
"trace2-ack"

Time (ms)

D
a
ta

/
A

C
K

 s
eq

u
en

ce
 n

u
m

b
er

Data/ACK sequence trace

Data ACKs

RTT

RTO

Window

Rxmit ACKs for rxmitted
packets (most probably)

12/5/11

3

6.02 Fall 2011 Lecture 23, Slide #9

•  If we can get “Idle” to 0, will
achieve goal

•  W = #packets in window
•  B = rate of slowest (bottleneck) link
•  RTT = avg delay

•  If W = B·RTT, path will be fully
utilized
–  The “bandwidth-delay

product”
–  Key concept in transport

protocols

Host A Host B

Send?

OK, 3 pkts

Idle

Setting the Window Size:
Apply Little’s Law

6.02 Fall 2011 Lecture 23, Slide #10

Throughput of Sliding Window Protocol
•  If there are no lost packets, protocol delivers W packets every

RTT seconds, so throughput is W/RTT.
–  Maximum throughput is also limited by rate of bottleneck link

(B): throughput = min(B, W/RTT)

•  Goal: select W so that (slowest) links are never idle due to
lack of packets
–  Avoid overfilling queues since that increases packet latency and,

if timeouts are triggered, possibility of spurious retransmissions.
•  Measured RTT includes queuing delay = RTTmin + Qdelay

•  As Qdelay increases, so does W, which increases Qdelay, …

•  Use B·RTTmin when calculating W

–  Slightly larger than B·RTTmin to ensure bottleneck link is busy
even if there are packet losses

•  Total expected # of transmissions, T, for successful delivery
 T = 1 + L·(1 + L·(1+…)) = 1 + L + L2 + … = 1/(1－L)
where L = 1-(1-per_link_loss)#hops_in_roundtrip is the round-trip loss rate.

•  Throughput is 1/T = 1－L = (1－p)#_hops_in_roundtrip

6.02 Fall 2011 Lecture 23, Slide #11

Sliding Window Implementation
•  Transmitter

–  Each packet includes a sequentially increasing sequence number
–  When transmitting, save (xmit time,packet) on un-ACKed list

–  Transmit packets if len(un-ACKed list) ≤ window size W

–  When acknowledgement (ACK) is received from the destination
for a particular sequence number, remove the corresponding
entry from un-ACKed list

–  Periodically check un-ACKed list for packets sent awhile ago
•  Retransmit, update xmit time in case we have to do it again!

•  “awhile ago”: xmit time < now － timeout

•  Receiver
–  Send ACK for each received packet, reference sequence number

–  Deliver packet payload to application in sequence number order
•  Save delivered packets in sequence number order in local buffer

(remove duplicates). Discard incoming packets which have already
been delivered (caused by retransmission due to lost ACK).

•  Keep track of next packet application expects. After each reception,
deliver as many in-order packets as possible.

6.02 Fall 2011 Lecture 23, Slide #12

Example

Q: The sender’s window size is 10 packets. At what
approximate rate (in packets per second) will the protocol
deliver a multi-gigabyte file from the sender to the receiver?
Assume that there is no other traffic in the network and
packets can only be lost because the queues overflow.

A: 10 packets / 21 ms, ~500 packets/s (actually 476 or so)

12/5/11

4

6.02 Fall 2011 Lecture 23, Slide #13

Example (cont.)

Q: You would like to roughly
double the throughput of this
sliding window transport protocol.
To do so, you can apply one of the
following techniques:
a.  Double window size W
b.  Halve the propagation delay of

the links
c.  Double the speed of the link

between the Switch and
Receiver.

Q: For each of the following sender window sizes (in packets),
list which of the above technique(s), if any, can approximately
double the throughput: W=10, W=50, W=30.

6.02 Fall 2011 Lecture 23, Slide #14

Solutions to Example
•  Note that BW-delay product on given path = 20 packets

•  W=10
–  Doubling window size ~doubles throughput (BW-delay product is

20 on path)

–  Halving RTT ~doubles throughput (since now BW-delay product
would be 10, equal to window size)

–  Doubling bottleneck link speed won’t change the throughput!

•  W=50
–  Doubling window size won’t change throughput (we’re already

saturating the bottleneck link)

–  Halving RTT won’t change throughput (same reason)

–  Doubling bottleneck link speed will ~double throughput because
new bw-delay product doubles to 40, and W=50 > 40

•  W=30 (trickiest case)
–  Doubling window size or halving RTT: no effect

–  Doubling bottleneck link changes BW-delay product to 40. W is
still lower than 40, so throughput won’t double. But it’ll certainly
increase, by perhaps about 50% more from before

