Recitation 9

Last Time:
- Encoding CC’s using various methods
 - state table, state diagram, generator sequence, D-transform, etc.

Today:
- Viterbi Decoding of CC’s.

Example 1:
* Consider the convolutional encoder defined by $g_1(x) = (110)$ and $g_2(x) = (110)$ shown below.

The corresponding state diagram is as below.

We can construct a trellis diagram, very useful in decoding a received vector \tilde{y}.

Trellis: an extension of state diagram with explicit time passage!

Observations:
1. As with state diagram, trellis has $2^m = 2^{k-1}$ states; for m-memory or constraint length n encoder.
2. For (n, k) binary CC, each node has 2^k branches leaving and 2^k branches entering.
3. We’ll assume that encoder starts at zero state (state s_0) that encoder is time-invariant, so \tilde{y} is constant.
 - that noise is uncorrelated from stage to stage.
4. After all bits of input vector \(x \) entered, need \(m \)-state transitions to return encoder to all-zero state \(S_0 \). Thus, given input sequence length \(x \), trellis must have \(1 + m \) stages, starting and stopping at \(S_0 \).

5. There are \(2^m \) distinct paths through trellis, each corresponding to a length \(nL + m \) possible codeword.

(We'll see how Viterbi addresses this issue)

Below is the trellis diagram for the encoder in our example. (Copied from lecture notes)

The Decoding Problem

Recall our baseband model:

\[
\begin{array}{c}
\times \\
\downarrow \quad \text{Encoder} \\
\downarrow \\
\downarrow \quad \text{Channel} \\
\downarrow \\
\downarrow \quad \text{Noise} \\
\downarrow \\
\downarrow \quad \text{Decoder} \\
\Rightarrow \\
\Rightarrow \quad \hat{r} \\
\Rightarrow \\
\Rightarrow \quad \theta \quad \text{ML decoder: selects estimate that maximizes } P(\hat{y} | \frac{1}{2})
\end{array}
\]

Naïve decoder: compares \(\hat{r} \) with \(2^m \) possible 1-bit sequences (e.g., for 16-bit \(\hat{r} \), need \(64K \) comparisons).

Viterbi decoder: Need not consider all \(2^m \) possible paths in trellis; at any stage, only \(2^m \) paths need be retained.

Assumes: channel is memoryless (i.e., errors uncorrelated from stage to stage).

Theorem: The path selected by the Viterbi decoder is the ML path! (Linear vs. O(exponential))
The Viterbi Algorithm:

Define:
S_j,t = node S_j at time t.

$PM(S_j,t)$ = path metric of node S_j at time t.

VA:
1. Initialize $t = 0$
 Set $PM(S_{0,0}) = 0$; $PM(S_{j,0}) = \infty \forall j \neq 0$.
2. While $(t < L+m)$
 increment t.
 Compute PPMs (partial path metrics) of paths entering each node.
 Set $PM(S_{j,t})$ = Best PPM entering node S_j at time t.
 Delete non-surviving branches.
3. Trace back from S_0 at time $t = L+m$, following surviving branches.
 The path thus defined is the unique ML codeword!

Example: Our example encoder encodes the message sequence $\mathbf{x} = (11001)$, generating the codeword $\mathbf{y} = (11, 00, 01, 10, 11, 11, 10)$. If \mathbf{y} is transmitted over a noisy BSC, so that the received word is $\mathbf{r} = (11, 00, 11, 10, 12, 11, 10)$. Use the Viterbi decoder to obtain the ML codeword $\hat{\mathbf{x}}$ and corresponding transmitted sequence $\hat{\mathbf{y}}$.

Solv: We'll use the constructed trellis with calculated PPMs, BMs and PMs using HD (d_H) as our metric (next page).

We obtain $\hat{\mathbf{x}} = (11, 00, 01, 10, 11, 11, 10)$ which corrected the errors!

The transmitted estimated sequence is thus (11001) as expected.
ML path minimizes $d_H(\hat{x}, \hat{y})$, so choose $\min PM$.

$$PM(s_{ij}, \hat{y}) = \min \left\{ PM(s_{ij}, \hat{y}) + BM(s_{ij}, s_{ij}), s_{ij} \text{ branches into } s_{ij} \right\}$$

where $BM = d_H(\hat{x}, \hat{y})$ at stage.