Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.02 Fall 2011 Solutions to Chapter 2 September 8, 2011

Please send errors or omissions to hari; questions best asked on piazza.

1. There are a total of 8 possible 3-bit binary numbers, and we will assume they are all equally
likely a priori. Alice knows it is even, so she has received log,(8/4) = 1 bit of information.
Bob knows it is one of 5 possibilities, so he has received log,(8/5) bits of information. Charlie
knows it has exactly two 1’s, so he knows it is either 011, 101, or 110. Therefore he has
received logy(8/3) bits of information. Deb is given all three clues, so she in fact knows that
the number is 101. Hence, she has received logy 8 = 3 bits of information.

2. (a) logy(1/0.001) = log, 1000 bits.
(b) 0.251log,(1/0.25) + 0.751og,(1/0.75) = 0.5 + 0.75 log,(4/3) = 2.5 — log, 3.

3. There are 2* = 16 4-bit numbers. Of these, the unknown number X differs from the known
one, Y in 2 bits, which means that there are (2i6) possibilities for X. Hence, you have been
given log,(16/6) = 1.42 bits of information.

4. We've narrowed down the choices for the dealer’s face-down card from 52 (any card in the
deck) to one of 49 cards (since we know it can’t be one of three visible cards. Therefore, the
amount of information you know now is a rather miniscule log,(52/49) = 0.086 bits.

5. (a) We get the least amount of information for Course VI (EECS): log,(100/38) bits, because
that has the highest probability of occurrence.

(b) The tree is constructed greedily starting with the smallest two probabilities and working
upwards. One solution is:

code for course I: 0110 (length 4)
code for course II: 010 (length 3)
code for course III: 0111 (length 4)
code for course VI: 1 (length 1)
code for course X: 000 (length 3)
code for course XVI: 001 (length 3)

There are of course many equivalent codes derived by swapping the ”0” and ”1” labels for
the children of any interior node of the decoding tree. So any code that meets the following
constraints would be fine.

(c) The average length would be equal to 100-(0.13-340.12-3+0.23-34-0.07-44-0.07-44-0.38-1) =
238 bits. For comparison, if we had a code that achieved entropy, the number of bits required
for 100 students would be 230.5.

6. (a) logy(100/25) = 2 bits of information.

(b) 3/100 - log,(100/3) + 7/100 - log,(100/7) + 25,100 - log, (100/25) + 31/100 - log,(100/31) +
34/100 - log,(100/34) = 1.973 bits of information.

Hari Balakrishnan



(c) One possible encoding is:

Card A: 000, Card K: 001, Card Q: 01, Card J: 10, Card 10: 11

(d) 1000 (3-0.034+3-0.07+2-0.25+2-0.31 +2-0.34) = 2100 bits.

(e) If the game was truly random, the best compression would not be able to compress better
than the entropy of the distribution per bit sent. The entropy is given by Part (b) above, so
one would not expect the compression of 1000 rounds to be done in less than 1973 bits. 43
bytes = 344 bits is substantially lower. The experimentally determined value of the actual
entropy (344/1000 = 0.344 bits) indicates that one or more of the symbols must have a
much higher probability of occuring than stated, which suggests a rigged game. The game is
crooked; it isn’t random.

7. (a) 10g2 m = 1Og2 4 = 2 bits.

(b) O, A, and E have encodings of length 2, I/U have encodings of length 3. The code must
be prefix-free, of course.

A: 00, O:01, E:10, I:110, U:111
(c) 100[(.25)(3) + (.75)(2)] = 100(0.75 4+ 1.5) = 225 bits.

(d) Ben is wrong, his implementation probably has a bug! The entropy is 2.19 bits... Ben’s
encoding uses fewer bits, which is impossible, so his code or his derviation of the expected
length must be bogus in some way.

Hari Balakrishnan



