Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

1. Dijkstra's algorithm is a greedy algorithm. We add nodes in order of non-decreasing cost of the minimum-path to the nodes. We get:
A: Order 1, Cost 2.
E: Order 2, Cost 3.
B: Order 3, Cost 4.
C: Order 4, Cost 5.
D: Order 5, Cost 6 .
2. In the picture below, the grey nodes (A in particular) run Bob's algorithm (shortest number of hops), while the white nodes (B in particular) run Alice's (minimum-cost).

Suppose the destination is E. A will pick B as its next hop because ABE is the shortest path. B will pick A as its next hop because BACDE is the minimum-cost path (cost of 4, compared to 11 for the ABE path). The result is a routing loop ABABAB...
3. (a) Yes. Any shortest path in G is also a shortest path in G^{\prime} because if the cost of a path P in G is c, then the cost of P in G^{\prime} is $k c$, for all P. Also, there's a one-to-one correspondence between paths in G and G^{\prime}.
(b) No. A counter-example is easy to construct. For example, suppose G is a triangle, A, B, C, where $\operatorname{cost}(A B)=1, \operatorname{cost}(B C)=1$, and $\operatorname{cost}(C A)=3$. The shortest path between A and C in G is $A-B-C$, with cost 2 . But now suppose $k=1$ and $h=2$. The link costs become $\operatorname{cost}(A B)=4, \operatorname{cost}(B C)=4$, and $\operatorname{cost}(A C=5)$. Now, the shortest path between A and C is the direct link, $A C$.
4. Statements (a) and (b) are false, statement (c) is true, and statement (d) is false. Statement (a) is false because u could propagate an incorrect cost to its neighbors causing the neighbor to have an incorrect route. In fact, u 's neighbors could do the same. Statement (c) is correct; a simple example is when the network is a tree, where there is exactly one path between any two nodes.

Statement (d) is false; no routing loops can occur under the stated condition. We can demonstrate this property by contradiction. Consider the shortest path from any node s to any other node t running the flawed routing protocol. If the path does not traverse u, no node on that path can have a loop because distance vector routing without any packet loss or failures is loop-free. Now consider the nodes for which the computed paths go through u; all these nodes are correctly implemented except for u, which means the paths between u and each of them is loop-free. Moreover, the path to u is itself loop-free because u picks one of its neighbors with smaller cost, and there is no possibility of a loop.
5. Reverse-engineering routing trees: See PSet \#9.
6. This question asks for the update rule in the Bellman-Ford integration step. The cost in S 's routing table for D should be set to $\min _{i}\left\{c_{i}+p_{i}\right\}$.
7. FishNet: See PSet \#9.
8. (a) B,C,E,A,F,D and B,C,E,F,A,D.
(b) No effect. The edge AC is not in any shortest path.
(c) Can affect route to \mathbf{A}. If $\operatorname{cost}_{A C} \leq 3$, then we can start using this edge to go to A instead of the edge BA.
(d) Can affect route to $\mathbf{C}, \mathbf{F}, \mathbf{E}$. If $\operatorname{cost}_{B C} \geq 7$, then we can use BE-EC to go to C instead of BC. If $\operatorname{cost}_{B C} \geq 5$, then we can use BE-EF to go to F. If $\operatorname{cost}_{B C} \geq 3$, can use BE to go to B .
(e) Can affect route to \mathbf{D}. If $\operatorname{cost}_{B C} \leq 1$, then we can use BC-CE-ED to go to D instead of BD.

