
6.02 Fall 2012 Lecture 2, Slide #1

6.02 Fall 2012
Lecture #2

•  More on entropy, coding and Huffman codes
•  Lempel-Ziv-Welch adaptive variable-length compression

6.02 Fall 2012 Lecture 2, Slide #2

Entropy and Coding
•  The entropy H(S) of a source S at some time

represents the uncertainty about the source output
at that time, or the expected information in the
emitted symbol.

•  If the source emits repeatedly, choosing
independently at each time from the same fixed
distribution, we say the source generates
independent and identically distributed (iid)
symbols.

•  With information being produced at this average
rate of H(S) bits per emission, we need to transmit
at least H(S) binary digits per emission on average
(since the maximum information a binary digit can
carry is one bit).

6.02 Fall 2012 Lecture 2, Slide #3

Bounds on Expected Code Length
•  We limit ourselves to instantaneously decodable

(i.e., prefix-free) codes --- these put the symbols at
the leaves of a code tree.

•  If L is the expected length of the code, the
reasoning on the previous slide suggests that we
need H(S) ≤ L. The proof of this bound is not hard,
see for example the very nice book by Luenberger,
Information Science, 2006.

•  Shannon showed how to construct codes satisfying
 L ≤ H(S)+1 (see Luenberger for details), but did not

 have a construction for codes with minimal
 expected length.

•  Huffman came up with such a construction.

6.02 Fall 2012 Lecture 2, Slide #4

Huffman Coding
•  Given the symbol probabilities, Huffman finds an

instantaneously decodable code of minimal
expected length L, and satisfying

 H(S) ≤ L ≤ H(S)+1
•  Instead of coding the individual symbols of an iid

source, we could code pairs sisj, whose
probabilities are pipj . The entropy of this “super-
source” is 2H(S) (because the two symbols are
independently chosen), and the resulting Huffman
code on N2 “super-symbols” satisfies

 2H(S) ≤ 2L ≤ 2H(S)+1

 where L still denotes expected length per symbol
 codeword. So now H(S) ≤ L ≤ H(S)+(1/2)

•  Extend to coding K at a time

6.02 Fall 2012 Lecture 2, Slide #5

Reduction
A 0.1 B 0.3 0.3 0.4 0.6

B 0.3 D 0.3 0.3 0.3 0.4

C 0.2 C 0.2 0.2 0.3

D 0.3 A 0.1 0.2

E 0.1 E 0.1

6.02 Fall 2012 Lecture 2, Slide #6

Trace-back
A 0.1 B 0.3 0.3 0.4 0.6 0

B 0.3 D 0.3 0.3 0.3 0.4 1

C 0.2 C 0.2 0.2 0.3

D 0.3 A 0.1 0.2

E 0.1 E 0.1

6.02 Fall 2012 Lecture 2, Slide #7

Trace-back
A 0.1 B 0.3 0.3 0.4 0.6 0
 1

B 0.3 D 0.3 0.3 0.3 0.4 1
 0 0

C 0.2 C 0.2 0.2 0.3

 0 1
D 0.3 A 0.1 0.2

E 0.1 E 0.1

6.02 Fall 2012 Lecture 2, Slide #8

Trace-back
A 0.1 B 0.3 0.3 0.4 0.6 0
 0 0 1

B 0.3 D 0.3 0.3 0.3 0.4 1
 0 1 0 0

C 0.2 C 0.2 0.2 0.3

 1 0 0 1
D 0.3 A 0.1 0.2

 1 1
E 0.1 E 0.1

6.02 Fall 2012 Lecture 2, Slide #9

Trace-back
A 0.1 B 0.3 0.3 0.4 0.6 0
 0 0 0 0 1

B 0.3 D 0.3 0.3 0.3 0.4 1
 0 1 0 1 0 0

C 0.2 C 0.2 0.2 0.3

 1 0 1 0 0 1
D 0.3 A 0.1 0.2

 1 1 0 1 1
E 0.1 E 0.1

 1 1 1

6.02 Fall 2012 Lecture 2, Slide #10

The Huffmann Code
A 0.1 B 0.3 0.3 0.4 0.6 0
 0 0

B 0.3 D 0.3 0.3 0.3 0.4 1
 0 1

C 0.2 C 0.2 0.2 0.3

 1 0
D 0.3 A 0.1 0.2

 1 1 0
E 0.1 E 0.1

 1 1 1

6.02 Fall 2012 Lecture 2, Slide #11

Example from last lecture

choicei pi log2(1/pi)
pi ∗

log2(1/pi)
Huffman
encoding

Expected
length

“A” 1/3 1.58 bits 0.528 bits 10 0.667 bits

“B” 1/2 1 bit 0.5 bits 0 0.5 bits

“C” 1/12 3.58 bits 0.299 bits 110 0.25 bits

“D” 1/12 3.58 bits 0.299 bits 111 0.25 bits

1.626 bits 1.667 bits

16 Pairs: 1.646 bits/sym
64 Triples: 1.637 bits/sym
256 Quads: 1.633 bits/sym

Entropy is 1.626 bits/symbol, expected length of Huffman
encoding is 1.667 bits/symbol.

How do we do better?

6.02 Fall 2012 Lecture 2, Slide #12

Another way to think about
Entropy and Coding

•  Consider a source S emitting one of symbols
 s1, s2, …, sN at each time, with probabilities

 p1, p2, …, pN respectively, independently of
 symbols emitted at other times. This is an iid

 source --- the emitted symbols are independent

 and identically distributed
•  In a very long string of K emissions, we expect to

typically get Kp1, Kp2, …, KpN instances of the
symbols s1, s2, …, sN respectively. (This is a very
simplified statement of the “law of large numbers”.)

•  A small detour to discuss the LLN

6.02 Fall 2012 Lecture 2, Slide #13

The Law of Large Numbers
•  The expected or mean number of occurrences of

symbol s1 in K independent repetitions is Kp1,
where p1 is the probability of getting s1 in a single
trial

•  The standard deviation (std) around this mean is
 sqrt{Kp1(1-p1)}

•  So the fractional one-std spread around around the
mean is

 sqrt{(1-p1)/(Kp1)}

 i.e., goes down as the square root of K.
•  Hence for large K, the number of occurrences of s1

is relatively tightly concentrated around the mean
value of Kp1

6.02 Fall 2012 Lecture 2, Slide #14

Application
•  Symbol source = American electorate
 s1=“Obama”, s2=“Romney”, p2 = 1-p1

•  Poll K people, and suppose M say “Obama”.

 Then reasonable estimate of p1 is M/K (i.e., we are

 expecting M=Kp1). For this example, suppose
 estimate of p1 is 0.55.

•  The fractional one-std uncertainty in this estimate
of p1 is approximately sqrt{0.45*0.55/K} (note: we
are looking at concentration around p1, not Kp1)

 For 1% uncertainty, we need to poll 2,475 people
 (not anywhere near 230 million!)

6.02 Fall 2012 Lecture 2, Slide #15

Back to another way to think
about Entropy and Coding

•  In a very long string of K emissions, we expect to
typically get Kp1, Kp2, …, KpN instances of the
symbols s1, s2, …, sN respectively, and all ways of
getting these are equally likely

•  The probability of any one such typical string is
 p1^(Kp1).p2^(Kp2)… pN^(KpN)

 so the number of such strings is approximately
 p1^(-Kp1).p2^(-Kp2)… pN^(-KpN). Taking the log2 of

 this number, we get KH(S).

•  So the number of such typical sequences is 2KH(S).
It takes KH(S) binary digits to count this many
sequences, so an average of H(S) binary digits per
symbol to code the typical sequences.

6.02 Fall 2012 Lecture 2, Slide #16

Some limitations
•  Symbol probabilities

–  may not be known

–  may change with time

•  Source
–  may not generate iid symbols, e.g., English text.

Could still code symbol by symbol, but this won’t be

efficient at exploiting the redundancy in the text.

Assuming 27 symbols (lower-case letters and space), could
use a fixed-length binary code with 5 binary digits (counts
up to 25 = 32).

Could do better with a variable-length code because even

assuming equiprobable symbols,

 H = log227 = 4.755 bits/symbol

6.02 Fall 2012 Lecture 2, Slide #17

What is the Entropy of English?

Taking account of actual individual symbol probabilities,
but not using context, entropy = 4.177 bits per symbol

http://www.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies.html

6.02 Fall 2012 Lecture 2, Slide #18

In fact, English text has lots of
context

•  Write down the next letter (or next 3 letters!) in the
snippet

Nothing can be said to be certain, except death and ta_

 But x has a very low occurrence probability
 (0.0017) in English words

–  Letters are not independently generated!

•  Shannon (1951) and others have found that the

entropy of English text is a lot lower than 4.177
–  Shannon estimated 0.6-1.3 bits/letter using human expts.
–  More recent estimates: 1-1.5 bits/letter

6.02 Fall 2012 Lecture 2, Slide #19

What exactly is it we want to
determine?

•  Average per-symbol entropy over long sequences:

 H = limK–>∞ H(S1,S2, S3, … ,SK)/K

where Sj denotes the symbol in position j in the text.

6.02 Fall 2012 Lecture 2, Slide #20

Lempel-Ziv-Welch (1977,’78,’84)
•  Universal lossless compression of sequential

(streaming) data by adaptive variable-length coding

•  Widely used, sometimes in combination with
Huffman (gif, tiff, png, pdf, zip, gzip, …)

•  Patents have expired --- much confusion and
distress over the years around these and related
patents

•  Ziv was also (like Huffman) an MIT graduate
student in the “golden years” of information theory,
early 1950’s

•  Theoretical performance: Under appropriate
assumptions on the source, asymptotically attains
the lower bound H on compression performance

6.02 Fall 2012 Lecture 2, Slide #21

Characteristics of LZW
“Universal lossless compression of sequential
(streaming) data by adaptive variable-length coding”

–  Universal: doesn’t need to know source statistics in
advance. Learns source characteristics in the course of
building a dictionary for sequential strings of symbols
encountered in the source text

–  Compresses streaming text to sequence of dictionary
addresses --- these are the codewords sent to the receiver

–  Variable length source strings assigned to fixed length
dictionary addresses (codes)

–  Starting from an agreed core dictionary of symbols,
receiver builds up a dictionary that mirrors the sender’s,
with a one-step delay, and uses this to exactly recover the
source text (lossless)

–  Regular resetting of the dictionary when it gets too big
allows adaptation to changing source characteristics

6.02 Fall 2012 Lecture 2, Slide #22

LZW: An Adaptive Variable-length
Code

• Algorithm first developed by Ziv and
Lempel (LZ88, LZ78), later improved by
Welch.

• As message is processed, encoder
builds a “string table” that maps
symbol sequences to an N-bit fixed-
length code. Table size = 2N

• Transmit table indices, usually shorter
than the corresponding string →
compression!

• Note: String table can be reconstructed
by the decoder using information in the
encoded stream – the table, while
central to the encoding and decoding
process, is never transmitted!

0 0

1 1

2 2

3 3

4 4

… …

252 252

253 253

254 254

255 255

256

257

258

259

260

261

262

…

2N-1

First 256 table
entries hold all
the one-byte
strings (e.g.,
ASCII codes).

Remaining
entries are
filled with
sequences from
the message.
When full,
reinitialize
table…

6.02 Fall 2012 Lecture 2, Slide #23

Try out LZW on

 abcabcabcabcabcabcabc

 (You need to go some distance out on this to

 encounter the special case discussed later.)

6.02 Fall 2012 Lecture 2, Slide #24

LZW Encoding
STRING = get input symbol
WHILE there are still input symbols DO
 SYMBOL = get input symbol
 IF STRING + SYMBOL is in the STRINGTABLE THEN
 STRING = STRING + SYMBOL
 ELSE
 output the code for STRING
 add STRING + SYMBOL to STRINGTABLE
 STRING = SYMBOL
 END
END

output the code for STRING

From http://marknelson.us/1989/10/01/lzw-data-compression/

 S=string, c=symbol (character) of text
1.  If S+c is in table, set S=S+c and read in next c.
2.  When S+c isn’t in table: send code for S, add S+c to table.
3.  Reinitialize S with c, back to step 1.

6.02 Fall 2012 Lecture 2, Slide #25

Example: Encode
“abbbabbbab…”
1.  Read a; string = a

2.  Read b; ab not in table
output 97, add ab to table, string = b

3.  Read b; bb not in table
output 98, add bb to table, string = b

4.  Read b; bb in table, string = bb

5.  Read a; bba not in table
output 257, add bba to table, string = a

6.  Read b, ab in table, string = ab

7.  Read b, abb not in table
output 256, add abb to table, string = b

8.  Read b, bb in table, string = bb

9.  Read a, bba in table, string = bba

10. Read b, bbab not in table
output 258, add bbab to table, string = b

256

257

258

259

260

261

262

ab

bb

bba

abb

bbab

6.02 Fall 2012 Lecture 2, Slide #26

Encoder Notes
•  The encoder algorithm is greedy – it’s designed to find the

longest possible match in the string table before it makes a
transmission.

•  The string table is filled with sequences actually found in the
message stream. No encodings are wasted on sequences not
actually found in the input data.

•  Note that in this example the amount of compression
increases as the encoding progresses, i.e., more input bytes
are consumed between transmissions.

•  Eventually the table will fill and then be reinitialized,
recycling the N-bit codes for new sequences. So the encoder
will eventually adapt to changes in the probabilities of the
symbols or symbol sequences.

6.02 Fall 2012 Lecture 2, Slide #27

LZW Decoding
Read CODE
STRING = TABLE[CODE] // translation table

WHILE there are still codes to receive DO
 Read CODE from encoder
 IF CODE is not in the translation table THEN
 ENTRY = STRING + STRING[0]
 ELSE
 ENTRY = get translation of CODE
 END
 output ENTRY
 add STRING+ENTRY[0] to the translation table
 STRING = ENTRY
END

(Ignoring special case in IF):
1.  Translate received code to output the corresponding table

entry E=e+R (e is first symbol of entry, R is rest)
2.  Enter S+e in table.
3.  Reinitialize S with E, back to step 1.

6.02 Fall 2012 Lecture 2, Slide #28

A special case: cScSc
•  Suppose the string being examined at the source is cSc, where

c is a specific character or symbol, S is an arbitrary (perhaps
null) but specific string (i.e., all c and S here denote the same
fixed symbol, resp. string).

•  Suppose cS is in the source and receiver tables already, and
cSc is new, then the algorithm outputs the address of cS,
enters cSc in its table, and holds the symbol c in its string,
anticipating the following input text.

•  The receiver does what it needs to, and then holds the string
cS in anticipation of the next transmission. All good.

•  But if the next portion of input text is Scx, the new string at
the source is cScx ---not in the table, so the algorithm outputs
the address of cSc and makes a new entry for cScx.

•  The receiver does not yet have cSc in its table, because it’s one
step behind! However, it has the string cS, and can deduce
that the latest table entry at the source must have its last
symbol equal to its first. So it enters cSc in its table, and then
decodes the most recently received address.

6.02 Fall 2012 Lecture 2, Slide #29

A couple of concluding thoughts
•  LZW is a good example of compression or

communication schemes that “transmit the
model” (with auxiliary information to run the
model), rather than “transmit the data”

•  There’s a whole world of lossy compression!
(Perhaps we’ll say a little later in the course.)

6.02 Fall 2012 Lecture 2, Slide #30

Pop Quiz

Which of these (A, B, C) is a valid Huffman code tree?

What is the expected length of the code in tree C above?

X
p=0.4

Y
p=0.3

Z,
p=0.3

A.

X, p=0.4

Y, p=0.3

Z, p=0.2

B.

W, p=0.1

X, p=0.4

Y, p=0.2

Z, p=0.3

C.

W, p=0.1

6.02 Fall 2012 Lecture 2, Slide #31

Sign up on Piazza please, ASAP!
Only ¾ of the class has done

this so far.

There’s a lot of course business
that gets transacted there,

and only there

