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6.02 Fall 2012 
Lecture #3 

•   Communication network architecture 
•   Analog channels 
•   The digital abstraction 
•   Binary symmetric channels 
•   Hamming distance 
•   Channel codes 
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The System, End-to-End 

Digitize 
(if needed) 

Original source 

Source coding 

Source binary digits 
(“message bits”) 

Bit stream 

COMMUNICATION NETWORK 

Render/display,  
etc. 

Receiving app/user 

Source decoding 

Bit stream 

•  The rest of 6.02 is about the colored oval 
•  Simplest network is a single physical communication link 
•  We’ll start with that, then get to networks with many links 
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Physical Communication Links are 
Inherently Analog 

Analog = continuous-valued, continuous-time 
 

 Voltage waveform on a cable 
 Light on a fiber, or in free space 
 Radio (EM) waves through the atmosphere 
 Acoustic waves in air or water 
 Indentations on vinyl or plastic 
 Magnetization of a disc or tape 
 … 
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or … Mud Pulse Telemetry, anyone?! 
 

“This is the most common method of data transmission used by 
MWD (Measurement While Drilling) tools. Downhole a valve is 
operated to restrict the flow of the drilling mud (slurry) 
according to the digital information to be transmitted. This 
creates pressure fluctuations representing the information. The 
pressure fluctuations propagate within the drilling fluid towards 
the surface where they are received from pressure sensors. On 
the surface, the received pressure signals are processed by 
computers to reconstruct the information. The technology is 
available in three varieties - positive pulse, negative pulse, 
and continuous wave.” 

 
(from Wikipedia) 
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Single Link Communication Model 
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Network Communication Model 
Three Abstraction Layers: Packets, Bits, Signals 
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Bit stream 
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Digital Signaling: Map Bits to Signals 
Key Idea: “Code” or map or modulate the desired bit sequence 
onto a (continuous-time) analog signal, communicating at 
some bit rate (in bits/sec). 
 
To help us extract the intended bit sequence from the noisy 
received signals, we’ll map bits to signals using a fixed set of 
discrete values.  For example, in a bi-level signaling (or bi-level 
mapping) scheme we use two “voltages”:  

 V0 is the binary value “0”  
 V1 is the binary value “1” 

If V0 = -V1 (and often even otherwise) we refer to this as 
bipolar signaling. 
 
At the receiver, process and sample to get a “voltage” 
•  Voltages near V0 would be interpreted as representing “0” 
•  Voltages near V1 would be interpreted as representing “1” 
•  If we space V0 and V1 far enough apart, we can tolerate 

some degree of noise --- but there will be occasional errors! 
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Digital Signaling: Receiving 

We can specify the behavior of the receiver with a graph that 
shows how incoming voltages are mapped to “0” and “1”. 
 
One possibility: 

V0 
volts 

V1 

“1” 

“0” 
V1+V0
2

The boundary between “0” 
and “1” regions is called the 
threshold voltage. 

If received voltage between V0 &           à “0”, else “1” 
 

V1+V0
2
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Bit-In, Bit-Out Model of Overall Path: 
 Binary Symmetric Channel 

Suppose that during transmission a “0” is turned into a 
“1” or a “1” is turned into a “0” with probability p, 
independently of transmissions at other times 
  
This is a binary symmetric channel (BSC) --- a useful and 
widely used abstraction  

0 

1 with prob p  

“heads” “tails” 
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Replication Code to reduce decoding error 

Replication factor, n (1/code_rate) 

Prob(decoding error) over BSC w/ p=0.01 

Code: Bit b coded as bb…b (n times) 
Exponential fall-off (note log scale) 
But huge overhead (low code rate) 

We can do a lot better! 
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Mutual Information 

Channel 
X Y

Noise 

I(X;Y ) = H (X)!H (X |Y )
How much is our uncertainty about     
reduced by knowing     ? 

X
Y

Evidently a central question in communication or,  
more generally, inference. Thank you, Shannon! 
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Evaluating conditional entropy and 
mutual information 

H (X |Y = yj ) = p(xi
i=1

m

! | yj )log2
1

p(xi | yj )
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#
$$

%

&
''

To compute conditional entropy: 

H (X |Y ) = H (X |Y = yj )p(
i=1

m

! yj )

because 
 
 p(xi, yj ) = p(xi )p(yj | xi )
= p(yj )p(xi | y j )

I(X;Y ) = I(Y ;X)

H (X,Y ) = H (X)+H (Y | X)

= H (Y )+H (X |Y )
so 

 mutual information is symmetric 
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e.g., Mutual information between  
input and output of  

binary symmetric channel (BSC) 

Channe l X ! {0,1} Y ! {0,1}
p

With probability    the input binary digit gets flipped 
before being presented at the output.  
 
 
 
 
 
 
 

p

I(X;Y ) = I(Y ;X) = H (Y )!H (Y | X)
=1!H (Y | X = 0)pX (0)!H (Y | X =1)pX (1)
=1! h(p)

Assume 0 and 1 
are equally likely 
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Binary entropy function  

!

Heads  (or C=1) with  
probability     
 
Tails (or C=0) with 
probability  

p

1! p

h(p)
h(p)

p

H (C) = !p log2 p! (1! p)log2(1! p) = h(p)

1.0 

0.5 

1.0 

   0 
  0 0.5 1.0 
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So mutual information between input and 
output of the BSC with equally likely 

inputs looks like this: 

0.5 1.0 

1.0 1! h(p)

p

For low-noise channel, significant reduction in uncertainty 
about the input after observing the output. 
 
For high-noise channel, little reduction. 
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Channel capacity 

C =max I(X;Y ) =max H (X)!H (X |Y )}{

To characterize the channel, rather than the input and output, define 
  
 
 
where the maximization is over all possible distributions of    .    X

This is the most we can expect to reduce our uncertainty  
about     through knowledge of   , and so must be the most 
information we can expect to send through the channel on 
average, per use of the channel. Thank you, Shannon! 

X Y

Channel 
X Y

Noise 
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e.g., capacity of the binary symmetric channel 

C =max H (Y )!H (Y | X )}{Easiest to compute as                                           , still over all  
possible probability distributions for    . The second term doesn’t  
depend  on this distribution, and the first term is maximized  
when 0 and 1 are equally likely at the input. So invoking our 
mutual information example earlier: 
 

Channel 
X Y

p

X
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What channel capacity tells us about how fast 
and how accurately we can communicate 

… 
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The magic of asymptotically error-free 
transmission at any rate  R <C

Shannon showed that one can theoretically transmit information  
(i.e., message bits) at an average rate           per use of the channel, 
with arbitrarily low error. 
 
(He also showed the converse, that transmission at an average 
rate          incurs an error probability that is lower-bounded  
by some positive number.) 

R <C

R !C

The secret: Encode blocks of     message bits into   -bit codewords, 
so              , with    and     very large.  

k n
R = k / n nk

Encoding blocks of     message bits into   -bit codewords 
to protect against channel errors is an example of 
                           channel coding  

k n
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Hamming Distance 

The number of bit positions 
in which the corresponding 
bits of two encodings of the 
same length are different 

The Hamming Distance (HD) between a valid binary codeword and 
the same codeword with e errors is e. 
 
The problem with no coding is that the two valid codewords (“0” 
and “1”) also have a Hamming distance of 1.  So a single-bit error 
changes a valid codeword into another valid codeword… 
 
 
 
 
 
What is the Hamming Distance of the replication code? 

1 0 “heads” “tails” 

single-bit error 

I wish he’d 
increase his 
Hamming distance 
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Idea: Embedding for Structural Separation 
Encode so that the codewords are “far enough” from 
each other 
Likely error patterns shouldn’t transform one codeword 
to another 

11 00 “0” “1” 

01 

10 
single-bit error may 
cause 00 to be 10 
(or 01) 

110 

000 “0” 

“1” 

100 

010 

111 

001 

101 

011 

Code: nodes chosen in 
hypercube + mapping  
of message bits to nodes 

If we choose 2k out of 
2n nodes, it means 
we can map all k-bit  
message strings in a 
space of n-bit codewords. 
The code rate is k/n. 
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Minimum Hamming Distance of Code vs.  
Detection & Correction Capabilities 

If d is the minimum Hamming distance between codewords, we can 
detect all patterns of <= (d-1) bit errors  

If d is the minimum Hamming distance between codewords, we can 
correct all patterns of             

or fewer bit errors  

d !1
2

"

#"
$

%$
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How to Construct Codes? 

Want: 4-bit messages with single-error correction (min HD=3) 
 
How to produce a code, i.e., a set of codewords, with this property? 
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A Simple Code: Parity Check 

•  Add a parity bit to message of length k to make the 
total number of “1” bits even (aka “even parity”). 

•  If the number of “1”s in the received word is odd, 
there there has been an error. 
 
0 1 1 0 0 1 0 1 0 0 1 1 → original word with parity bit 
0 1 1 0 0 0 0 1 0 0 1 1 → single-bit error (detected)  
0 1 1 0 0 0 1 1 0 0 1 1 → 2-bit error (not detected)  
 

•  Minimum Hamming distance of parity check code 
is 2 

–  Can detect all single-bit errors 

–  In fact, can detect all odd number of errors 
–  But cannot detect even number of errors 

–  And cannot correct any errors 
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Binary Arithmetic 

•  Computations with binary numbers in code 
construction will involve Boolean algebra, or 
algebra in “GF(2)” (Galois field of order 2), or 
modulo-2 algebra:  

 
             0+0=0,     1+0=0+1=1,        1+1=0 

           
                  0*0=0*1=1*0 =0,      1*1=1 
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Linear Block Codes 
Block code: k message bits encoded to n code bits, 
i.e., each of 2k messages encoded into a unique n-bit 
combination via a linear transformation, using GF(2) 
operations: 
                           C=D.G 
C is an n-element row vector containing the codeword 
D is a k-element row vector containing the message 
G is the kxn generator matrix 
Each codeword bit is a specified linear combination of 
message bits.  
 
Key property: Sum of any two codewords is also a 
codeword à necessary and sufficient for code to be 
linear.   (So the all-0 codeword has to be in any linear 
code --- why?)   
       More on linear block codes in recitation & next lecture!! 
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Minimum HD of Linear Code 

•  (n,k) code has rate k/n 

•  Sometimes written as (n,k,d), where d is the 
minimum HD of the code. 

•  The “weight” of a code word is the number of 1’s in 
it.  

•  The minimum HD of a linear code is the minimum 
weight found in its nonzero codewords 
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Examples: What are n, k, d here? 

{000, 111} 
 
{0000, 1100, 0011, 1111} 
 

{1111, 0000, 0001} 

{1111, 0000, 0010, 1100} 

Not linear 
codes! The HD of a 

linear code is 
the number of 
“1”s in the non-
zero codeword 
with the 
smallest # of 
“1”s 

(3,1,3). Rate= 1/3. 
 
(4,2,2). Rate = ½. 
 

(7,4,3) code. Rate = 4/7. 



6.02 Fall 2012 Lecture 3, Slide #30 

(n,k) Systematic Linear Block Codes 

•  Split data into k-bit blocks 
•  Add (n-k) parity bits to each block using (n-k) linear 

equations, making each block n bits long 

•  Every linear code can be represented by an 
equivalent systematic form 

•  Corresponds to choosing G = [I | A], i.e., the 
identity matrix in the first k columns 

Message bits Parity bits 

k 

n 
The entire block is the 
called the “code word 
in systematic form” 

n-k 


