

INTRODUCTION TO EECS II
DIGITAL
COMMUNICATION SYSTEMS

6.02 Fall 2012 Lecture \#4

- Linear block codes
- Rectangular codes
- Hamming codes

Single Link Communication Model

Embedding for Structural Separation

Code: nodes chosen in hypercube + mapping of message bits to nodes

If we choose 2^{k} out of 2^{n} nodes, it means we can map all k-bit message strings in a space of n-bit codewords. The code rate is \mathbf{k} / \mathbf{n}.

Minimum Hamming Distance of Code vs. Detection \& Correction Capabilities

If d is the minimum Hamming distance between codewords, we can:

- detect all patterns of up to t bit errors if and only if $d \geq t+1$
- correct all patterns of up to t bit errors if and only if $d \geq 2 t+1$
- detect all patterns of up to t_{D} bit errors while correcting all patterns of $t_{C}\left(<t_{D}\right)$ errors if and only if $d \geq t_{C}+t_{D}+1$
e.g.:

$$
\begin{gathered}
d=4 \\
t_{C}=1, t_{D}=2
\end{gathered}
$$

Linear Block Codes

Block code: \boldsymbol{k} message bits encoded to \mathbf{n} code bits i.e., each of $\mathbf{2}^{\boldsymbol{k}}$ messages encoded into a unique \mathbf{n}-bit codeword via a linear transformation.

Key property: Sum of any two codewords is also a codeword \rightarrow necessary and sufficient for code to be linear.
(\mathbf{n}, \mathbf{k}) code has rate \mathbf{k} / \mathbf{n}.
Sometime written as ($\mathbf{n}, \mathbf{k}, \mathbf{d}$), where \mathbf{d} is the minimum Hamming Distance of the code.

Generator Matrix of Linear Block Code

Linear transformation:

$$
\mathrm{C}=\mathrm{D} \cdot \mathrm{G}
$$

C is an n-element row vector containing the codeword
D is a k -element row vector containing the message
G is the kxn generator matrix
Each codeword bit is a specified linear combination of message bits.

Each codeword is a linear combination of rows of G.

(n, k) Systematic Linear Block Codes

- Split data into k-bit blocks
- Add ($n-k$) parity bits to each block using ($n-k$) linear equations, making each block n bits long

- Every linear code can be represented by an equivalent systematic form --- ordering is not significant, direct inclusion of k message bits in n -bit codeword is.
- Corresponds to using invertible transformations on rows and permutations on columns of G to get
- $G=[I \mid A]---$ identity matrix in the first k columns

Example: Rectangular Parity Codes

Idea: start with rectangular array of data bits, add parity checks for each row and column. Single-bit error in data will show up as parity errors in a particular row and column, pinpointing the bit that has the error.

$$
\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0
\end{array}
$$

Parity for each row and column is
correct \Rightarrow no errors

0	1	1
1	0	0
1	0	

10

Parity check fails for row \#2 and column \#2
\Rightarrow bit D_{4} is incorrect

011
111
10

Rectangular Code Corrects Single Errors

Claim: The min HD of the rectangular code with \boldsymbol{r} rows and \boldsymbol{c} columns is $\mathbf{3}$. Hence, it is a single error correction (SEC) code.
Code rate $=r c /(r c+r+c)$.
If we add an overall parity bit P, we get a ($r c+r+c+1, r c, 4$) code Improves error detection but not correction capability
Proof: Three cases.

D_{1}	D_{2}	D_{3}	D_{4}	P_{1}
D_{5}	D_{6}	D_{7}	D_{8}	P_{2}
D_{9}	D_{10}	D_{11}	D_{12}	P_{3}
P_{4}	P_{5}	P_{6}	P_{7}	P

(1) Msgs with HD $1 \rightarrow$ differ in 1 row and 1 col parity
(2) Msgs with HD $2 \rightarrow$ differ in either 2 rows OR 2 cols or both \rightarrow HD ≥ 4
(3) Msgs with HD 3 or more \rightarrow HD ≥ 4

Matrix Notation

Task: given k-bit message, compute n-bit codeword. We can use standard matrix arithmetic (modulo 2) to do the job. For example, here's how we would describe the $(9,4,4)$ rectangular code that includes an overall parity bit.

The generator matrix, $G_{k x n}=\left[\begin{array}{l|l}I_{k \times k} & A_{k \times(n-k)}\end{array}\right]$

Decoding Rectangular Parity Codes

Receiver gets possibly corrupted word, \boldsymbol{w}.
Calculates all the parity bits from the data bits.
If no parity errors, return $\boldsymbol{r c}$ bits of data.
Single row or column parity bit error $\rightarrow \boldsymbol{r c}$ data bits are fine, return them

If parity of row \boldsymbol{x} and parity of column \boldsymbol{y} are in error, then the data bit in the $(\boldsymbol{x}, \boldsymbol{y})$ position is wrong; flip it and return the $\boldsymbol{r c}$ data bits

All other parity errors are uncorrectable. Return the data as-is, flag an "uncorrectable error"

Let's do some rectangular parity decoding

DI	D2	PI
D3	D4	P2
P3	P4	

1. Decoder action: \qquad

0	0	0
1	1	1
1	1	

2. Decoder action: \qquad

0	0	1
0	1	0
0	0	

3. Decoder action: \qquad

How Many Parity Bits Do Really We Need?

- We have n-k parity bits, which collectively can represent $\mathbf{2}^{\mathbf{n - k}}$ possibilities
- For single-bit error correction, parity bits need to represent two sets of cases:
- Case 1: No error has occurred (1 possibility)
- Case 2: Exactly one of the code word bits has an error (\mathbf{n} possibilities, not \mathbf{k})
- So we need $\mathbf{n + 1} \leq \mathbf{2}^{\mathrm{n}-\mathrm{k}}$

$$
\mathrm{n} \leq 2^{\mathrm{n}-\mathrm{k}}-1
$$

- Rectangular codes satisfy this with big margin --inefficient

Hamming Codes

- Hamming codes correct single errors with the minimum number of parity bits:

$$
\mathrm{n}=2^{\mathrm{n}-\mathrm{k}}-1
$$

- $(7,4,3)$
- $(15,11,3)$
- $\left(2^{\mathrm{m}}-1,2^{\mathrm{m}}-1-\mathrm{m}, 3\right)$
- --- "perfect codes" (but not best!)

Towards More Efficient Codes: $(7,4,3)$ Hamming Code Example

- Use minimum number of parity bits, each covering a subset of the data bits.
- No two message bits belong to exactly the same subsets, so a single-bit error will generate a unique set of parity check errors.

Logic Behind Hamming Code Construction

- Idea: Use parity bits to cover each axis of the binary vector space
- That way, all message bits will be covered with a unique combination of parity bits

Index	I	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Binary index	001	010	011	100	101	110	III
(7,4) code	PI	P2	DI	P3	D2	D3	D4

P_{1} with binary index 001 covers

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{D}_{1}+\mathrm{D}_{2}+\mathrm{D}_{4} \\
& \mathrm{P}_{2}=\mathrm{D}_{1}+\mathrm{D}_{3}+\mathrm{D}_{4} \\
& \mathrm{P}_{3}=\mathrm{D}_{2}+\mathrm{D}_{3}+\mathrm{D}_{4}
\end{aligned}
$$

D_{1} with binary index 011
D_{2} with binary index 101
D_{4} with binary index 111

Syndrome Decoding: Idea

- After receiving the possibly corrupted message (use ' to indicate possibly erroneous symbol), compute a syndrome bit $\left(\mathrm{E}_{\mathrm{i}}\right)$ for each parity bit

$$
\begin{aligned}
& \mathrm{E}_{1}=\mathrm{D}_{1}^{\prime}+\mathrm{D}_{2}^{\prime}+\mathrm{D}_{4}^{\prime}+\mathrm{P}_{1}^{\prime} \\
& \mathrm{E}_{2}=\mathrm{D}_{1}^{\prime}+\mathrm{D}_{3}^{\prime}+\mathrm{D}_{4}^{\prime}+\mathrm{P}_{2}^{\prime} \\
& \mathrm{E}_{3}=\mathrm{D}_{2}^{\prime}+\mathrm{D}_{3}^{\prime}+\mathrm{D}_{4}^{\prime}+\mathrm{P}_{3}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& 0=D_{1}+D_{2}+D_{4}+P_{1} \\
& 0=D_{1}+D_{3}+D_{4}+P_{2} \\
& 0=D_{2}+D_{3}+D_{4}+P_{3}
\end{aligned}
$$

- If all the E_{i} are zero: no errors
- Otherwise use the particular combination of the E_{i} to figure out correction

$E_{3} E_{2} E_{1}$	Corrective Action
000	no errors

Index	I	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Binary index	001	010	$0 \mid I$	100	101	110	$1 \mid I$
$(7,4)$ code	PI	P2	DI	P3	D2	D3	D4

$001 \quad p_{1}$ has an error, flip to correct $010 \quad p_{2}$ has an error, flip to correct $011 d_{1}$ has an error, flip to correct $100 \quad p_{3}$ has an error, flip to correct $101 d_{2}$ has an error, flip to correct

Constraints for more than single-bit errors

Code parity constraint inequality for single-bit errors

$$
1+\mathrm{n} \leq 2^{\mathrm{n}-\mathrm{k}}
$$

Write-out the inequality for \mathbf{t}-bit errors

Elementary Combinatorics

- Given n objects, in how many ways can we choose m of them?

If the ordering of the m selected objects matters, then

$$
n(n-1)(n-2) \ldots(n-m+1)=n!/(n-m)!
$$

If the ordering of the m selected objects doesn't matter, then the above expression is too large by a factor m !, so
"n choose $\mathrm{m} "=\binom{n}{m}=\frac{n!}{(n-m)!m!}$

Error-Correcting Codes occur in many other contexts too

- e.g., ISBN numbers for books,

$$
0-691-12418-3
$$

(Luenberger's Information Science)

- $1 \mathrm{D}_{1}+2 \mathrm{D}_{2}+3 \mathrm{D}_{3}+\ldots+10 \mathrm{D}_{10}=0 \bmod 11$

Detects single-digit errors, and transpositions

