

INTRODUCTION TO EECS II DIGITAL COMMUNICATION sysTems

6.02 Fall 2012 Lecture \#6

- Convolutional codes
- State-machine view \& trellis

Error Control Codes for Interplanetary Space Probes

- Early Mariner probes, 1962-1967 (Mars, Venus) no ECC
- Later Mariner and Viking probes, 1969-1976 (Mars, Venus) - linear block codes, e.g.,
$(32,6,16)$ bi-orthogonal or Hadamard code
- codewords comprise: the all-0 word, the all-1 word, and the other codewords all have sixteen 0's, sixteen 1's. The complement of each codeword is a codeword.

Bi-orthogonal Codes

- e.g., used on Mariner 9 (1971, Mars orbit) to correct picture transmission errors.
- Data word length: $\mathrm{k}=6$ bits, for 64 grayscale values.
- Usable block length n around 30 bits. Could have done 5repetition code, but comparable rate with better error correction from a [32, 6, 16] Hadamard code.
- Used through the 1980's.
- The efficient decoding algorithm was an important factor in the decision to use this code. The circuitry used was called the "Green Machine".
- More generally for such codes,

$$
\mathrm{n}=2^{\wedge}(\mathrm{k}-1), \quad \mathrm{d}=2^{\wedge}(\mathrm{k}-2)
$$

Mariner 9 (400 million km trip)

- "Spacecraft control was through the central computer and sequencer which had an onboard memory of 512 words. The command system was programmed with 86 direct commands, 4 quantitative commands, and 5 control commands. Data was stored on a digital reel-to-reel tape recorder. The 168 meter 8 -track tape could store 180 million bits recorded at $132 \mathrm{kbits} / \mathrm{s}$. Playback could be done at $16,8,4,2$, and $1 \mathrm{kbit} / \mathrm{s}$ using two tracks at a time. Telecommunications were via dual S-band $10 \mathrm{~W} / 20 \mathrm{~W}$ transmitters and a single receiver through the high gain parabolic antenna, the medium gain horn antenna, or the low gain omnidirectional antenna." (NASA)

7329 images, e.g.:

More powerful codes needed for higher data rates with limited transmitter power

- Space probe may have a 20W transmitter to cover tens of billions of kilometers!
- Part of the secret is the antenna --- directs the beam to produce the same received intensity as an omnidirectional antenna radiating in the megawatts
- Also "cryogenically-cooled low-noise amplifiers, sophisticated receivers, and data coding and errorcorrection schemes. These systems can collect, detect, lock onto, and amplify a vanishingly small signal that reaches Earth from the spacecraft, and can extract data from the signal virtually without errors." (JPL quote)
- Convolutional codes with Viterbi decoding Voyager (1977) onwards, Cassini, Mars Exploration Rover, ...

Saturn and Titan from Cassini, August 29, 2012

Phoning home using a $K=15$, rate $=1 / 6$ convolutional code 82,950 bps
(Cassini Saturn probe, Mars Pathfinder, Mars Rover)

Convolutional Codes (Peter Elias, 1955)

- Like the block codes discussed earlier, send parity bits computed from blocks of message bits
- Unlike block codes, generally don't send message bits, send only the parity bits! (i.e., "non-systematic")
- The code rate of a convolutional code tells you how many parity bits are sent for each message bit. We'll mostly be talking about rate 1 / r codes, i.e., r parity bits/message bit.
- Use a sliding window to select which message bits are participating in the parity calculations. The width of the window (in bits) is called the code's constraint length \mathbf{K}.

$$
\begin{aligned}
& p_{0}[n]=x[n]+x[n-1]+x[n-2] \\
& p_{1}[n]=x[n]+x[n-2]
\end{aligned}
$$

(aka XOR)

Parity Bit Equations

- A convolutional code generates sequences of parity bits from sequences of message bits by a convolution operation:

$$
p_{i}[n]=\left(\sum_{j=0}^{K-1} g_{i}[j] x[n-j]\right) \bmod 2
$$

- K is the constraint length of the code
- The larger K is, the more times a particular message bit is used when calculating parity bits
\rightarrow greater redundancy
\rightarrow better error correction possibilities (usually, though not always)
- g_{i} is the K-element generator for parity bit p_{i}.
- Each element $g_{i}[j]$ is either 0 or 1
- More than one parity sequence can be generated from the same message; the simplest choice is to use 2 generator polynomials

Transmitting Parity Bits

- We'll transmit the parity sequences, not the message itself
- As we'll see, we can recover the message sequences from the parity sequences
- Each message bit is "spread across" K elements of each parity sequence, so the parity sequences are better protection against bit errors than the message sequence itself
- If we're using multiple generators, construct the transmit sequence by interleaving the bits of the parity sequences:

$$
\text { xmit }=p_{0}[0], p_{1}[0], p_{0}[1], p_{1}[1], p_{0}[2], p_{1}[2], \ldots
$$

- Code rate is $1 /$ number_of_generators
- 2 generators \rightarrow rate $=1 / 2$
- Engineering tradeoff: using more generators improves bit-error correction but decreases rate of the code (the number of message bits/s that can be transmitted)

Example

- Using two generators:
- $g_{0}=1,1,1,0,0, \ldots$ abbreviated as 111 for $K=3$ code
- $\mathrm{g}_{1}=1,0,1,0,0, \ldots$ abbreviated as 110 for $K=3$ code
- Writing out the equations for the parity sequences:
$-\mathrm{p}_{0}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]+\mathrm{x}[\mathrm{n}-1]+\mathrm{x}[\mathrm{n}-2]$
$-p_{1}[n]=x[n]+x[n-2]$
- Let $\mathrm{x}[\mathrm{n}]=[1,0,1,1, \ldots] ; \mathrm{x}[\mathrm{n}]=0$ when $\mathrm{n}<0$:
$-\mathrm{p}_{0}[0]=(1+0+0) \bmod 2=1, \mathrm{p}_{1}[0]=(1+0) \bmod 2=1$
$-\mathrm{p}_{0}[1]=(0+1+0) \bmod 2=1, \mathrm{p}_{1}[1]=(0+0) \bmod 2=0$
$-\mathrm{p}_{0}[2]=(1+0+1) \bmod 2=0, \mathrm{p}_{1}[2]=(1+1) \bmod 2=0$
$-\mathrm{p}_{0}[3]=(1+1+0) \bmod 2=0, \mathrm{p}_{1}[3]=(1+0) \bmod 2=1$
- Transmit: $1,1,1,0,0,0,0,1, \ldots$

Shift-Register View

- One often sees convolutional encoders described with a block diagram like the following:

- Message bit in, parity bits out
- Input bits arrive one-at-a-time from the left
- The box computes the parity bits using the incoming bit and the $K-1$ previous message bits
- At the end of the bit interval, the saved message bits are shifted right by one, and the incoming bit moves into the left position.

Example: Transmit message 1011

Processing $x[0]$

Processing $x[2]$

$$
p_{0}[n]=x[n]+x[n-1]+x[n-2]
$$

$$
\mathrm{p}_{1}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]+\mathrm{x}[\mathrm{n}-2]
$$

Processing $\mathrm{x}[1]$

Processing x[3]
Xmit seq: 1, 1, 1, 0, 0, 0, 0, 1, .. (codeword)

State-Machine View

$$
\begin{aligned}
& \mathrm{p}_{0}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]+\mathrm{x}[\mathrm{n}-1]+\mathrm{x}[\mathrm{n}-2] \\
& \mathrm{p}_{1}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]+\mathrm{x}[\mathrm{n}-2]
\end{aligned}
$$

(Generators: $\mathrm{g}_{0}=111, \mathrm{~g}_{1}=101$)
The state machine is the same for all $K=3$ codes. Only the p_{i} labels change depending on number and values for the generator polynomials.

- Example: $K=3$, rate $-1 / 2$ convolutional code
- There are 2^{K-1} states
- States labeled with (x[n-1], x[n-2]) value
- Arcs labeled with $\mathrm{x}[\mathrm{n}] / \mathrm{p}_{0}[\mathrm{n}] \mathrm{p}_{1}[\mathrm{n}]$
${ }_{6.02 \text { Fall } 2012} \mathrm{msg}=101100 ; \mathrm{xmit}=111000010111_{\text {Leeture } 6 \text {, Slide }}$ e115

Trellis View

- State machine unfolded in time (fill in details using notes as guide, for the example considered here!)

00

01

$\mathrm{n}=0$
$\mathrm{n}=1$

$\mathrm{n}=3$

11=3

The Parity Stream forms a Linear Code

- Smallest-weight nonzero codeword has a weight that (locally in time) plays a role analogous to d, the minimum Hamming distance. It's called the free distance (fd) of the convolutional code.
- What is fd for our example?

Encoding \& Decoding Convolutional Codes

- Transmitter (aka Encoder)
- Beginning at starting state, processes message bit-by-bit
- For each message bit: makes a state transition, sends $p_{0} p_{1 \ldots}$
- Pad message with $K-1$ zeros to ensure return to starting state
- Receiver (aka Decoder)
- Doesn't have direct knowledge of transmitter's state transitions; only knows (possibly corrupted) received parity bits, p_{i}
- Must find most likely sequence of transmitter states that could have generated the received parity bits, p_{i}
- If BER $<1 / 2, P$ (more errors) $<P$ (fewer errors)
- When $B E R<1 / 2$, maximum-likelihood message sequence is the one that generated the codeword (here, sequence of parity bits) with the smallest Hamming distance from the received codeword (here, parity bits)
- I.e., find nearest valid codeword closest to the received codeword - Maximum-likelihood (ML) decoding

In the absence of noise

- Decoding is trivial:

$$
\begin{aligned}
& \mathrm{p}_{0}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]+\mathrm{x}[\mathrm{n}-1]+\mathrm{x}[\mathrm{n}-2] \\
& \mathrm{p}_{1}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]+\mathrm{x}[\mathrm{n}-2]
\end{aligned}
$$

- Can you see how to recover the input $x[$.$] from the$ parity bits $\mathrm{p}[$.$] ?$
- In the presence of errors in the parity stream, message bits will get corrupted at about the same rate as parity bits, with this simple-minded recovery.

Spot Quiz!

Consider the convolutional code given by

$$
\begin{aligned}
& \mathrm{p}_{0}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]+\mathrm{x}[\mathrm{n}-2]+\mathrm{x}[\mathrm{n}-3] \\
& \mathrm{p}_{1}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]+\mathrm{x}[\mathrm{n}-1]+\mathrm{x}[\mathrm{n}-2] \\
& \mathrm{p}_{2}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]+\mathrm{x}[\mathrm{n}-1]+\mathrm{x}[\mathrm{n}-2]+\mathrm{x}[\mathrm{n}-3]
\end{aligned}
$$

1. Constraint length, K, of this code $=$ \qquad
2. Code rate $=$ \qquad
3. Coefficients of the generators $=$ \qquad , —, -
4. No. of states in state machine of this code $=$
