Viterbi decoding of convolutional codes
Path and branch metrics
Hard-decision & soft-decision decoding
Performance issues: decoder complexity, post-decoding BER, “free distance” concept
Convolutional Codes

• Coding review
• Decoding via Viterbi algorithm
Key Concept for Coding and Decoding:
Trellis

- **Example:** $K=3$, rate-$\frac{1}{2}$ convolutional code
 - $g_0 = 111$: $p_0[n] = 1 \times x[n] + 1 \times x[n-1] + 1 \times x[n-2]$
 - $g_1 = 101$: $p_1[n] = 1 \times x[n] + 0 \times x[n-1] + 1 \times x[n-2]$

- States labeled with $x[n-1] \ x[n-2]$
- Arcs labeled with $x[n]/p_0p_1$
Trellis View at Transmitter

\[\begin{array}{cccccccc}
\text{x[n]} & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
\text{Codeword} & 00 & 11 & 01 & 10 & 01 & 11 \\
\end{array} \]

\[x[n-1]x[n-2] \]

\[\text{time} \]
Decoding: Finding the Maximum-Likelihood (ML) Path

Given the received voltages, the receiver must find the most-likely sequence of transmitter states, i.e., the path through the trellis that minimizes the "distance" between the received parity voltages and the voltages the transmitter would have sent had it followed that state sequence.

One solution: Viterbi decoding
Receiver

- For the code:

 \[
 p_0 = x[n]+x[n-1]+x[n-2] \\
 p_1 = x[n] + x[n-2]
 \]

- Received:

 000101100110

- Some errors have occurred...

- What’s the 4-bit message?

  ```
<table>
<thead>
<tr>
<th>Msg</th>
<th>Codeword</th>
<th>Received</th>
<th>Hamming distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>000000000000</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>0001</td>
<td>000000111011</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>0010</td>
<td>000011101100</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>0011</td>
<td>000011010111</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>0100</td>
<td>001110110000</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>0101</td>
<td>001110001011</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>0110</td>
<td>001101011100</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>0111</td>
<td>001101100111</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>111011000000</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>1001</td>
<td>111011111011</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>1010</td>
<td>111000101100</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>1011</td>
<td>111000010111</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>1100</td>
<td>110101110000</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>1101</td>
<td>110101001011</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>1110</td>
<td>110110011100</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>1111</td>
<td>110110100111</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
  Most likely: 0111
```

- i.e., message whose codeword is closest to rcvd bits

  ```
  Initial and final state: 00
  ```
Viterbi Algorithm

• Want: Most likely message sequence
• Have: (possibly corrupted) received parity sequences
• Viterbi algorithm for a given K and r:
 – Works incrementally to compute most likely message sequence
 – Uses two metrics
• Branch metric: BM(xmit,rcvd) proportional to negative log likelihood, i.e. negative log probability that we receive \(rcvd \), given that \(xmit \) was sent.
 – “Hard decision”: use digitized bits, compute Hamming distance between \(xmit \) and \(rcvd \). Smaller distance is more likely if BER < 1/2
 – “Soft decision”: use function of received voltages directly
• Path metric: PM\[s,i\] for each state \(s \) of the \(2^{K-1} \) transmitter states and bit time \(i \), where \(0 \leq i < L = \text{len}(message) \).
 – \(\text{PM}[s,i] = \text{smallest sum} \) of BM(xmit, rcvd) over all message sequences \(m \) that place transmitter in state \(s \) at time \(i \)
 – \(\text{PM}[s,i+1] \) computed from \(\text{PM}[s,i] \) and \(p_0[i],...,p_{r-1}[i] \)
Hard Decisions

• As we receive each bit it’s immediately digitized to “0” or “1” by comparing it against a threshold voltage
 – We lose the information about how “good” the bit is: a “1” at .9999V is treated the same as a “1” at .5001V

• The branch metric used in the Viterbi decoder under hard-decision decoding is the Hamming distance between the digitized received voltages and the expected parity bits

• Throwing away information is (almost) never a good idea when making decisions
 – Can we come up with a better branch metric that uses more information about the received voltages?
Soft-Decision Decoding

• In practice, the receiver gets a voltage level, V, for each received parity bit
 – Sender sends V0 or V1 volts; V in (-∞,∞) assuming additive Gaussian noise

• Idea: Pass received voltages to decoder before digitizing

• Define a “soft” branch metric as the square of the Euclidian distance between received voltages and expected voltages

\[V_{p0}^2 + V_{p1}^2 \]

“Soft” metric when expected parity bits are 0,0

• Soft-decision decoder chooses path that minimizes sum of the squares of the Euclidean distances between received and expected voltages

 – Different BM & PM values, but otherwise the same algorithm
Viterbi Algorithm with Hard Decisions

• Branch metrics measure the contribution to negative log likelihood by comparing received parity bits to possible transmitted parity bits computed from possible messages.

• Path metric $PM[s, i]$ proportional to negative log likelihood of transmitter being in state s at time i, assuming the mostly likely message of length i that leaves the transmitter in state s.

• Most likely message? The one that produces the smallest $PM[s, N]$.

• At any given time there are 2^{K-1} most-likely messages we’re tracking → time complexity of algorithm grows exponentially with constraint length K, but only linearly with message length (as opposed to exponentially in message length for simple-minded enumeration).
Hard-decision Branch Metric

- **BM = Hamming distance** between expected parity bits and received parity bits
- **Compute BM for each transition arc in trellis**
 - Example: received parity = 00
 - BM(00,00) = 0
 - BM(01,00) = 1
 - BM(10,00) = 1
 - BM(11,00) = 2
- Will be used in computing PM[s,i+1] from PM[s,i].

![Diagram](image-url)
Computing PM[s, i+1]

Starting point: we’ve computed PM[s, i], shown graphically as label in trellis box for each state at time i.

Example: PM[00, i] = 1 means there was 1 bit error detected when comparing received parity bits to what would have been transmitted when sending the most likely message, considering all messages that place the transmitter in state 00 at time i.

Q: What’s the most likely state s for the transmitter at time i?
A: state 00 (smallest PM[s, i])
Q: If the transmitter is in state \(s \) at time \(i+1 \), what state(s) could it have been in at time \(i \)?

A: For each state \(s \), there are two predecessor states \(\alpha \) and \(\beta \) in the trellis diagram.

Example: for state 01, \(\alpha = 10 \) and \(\beta = 11 \).

Any message sequence that leaves the transmitter in state \(s \) at time \(i+1 \) must have left the transmitter in state \(\alpha \) or state \(\beta \) at time \(i \).
Computing PM\([s,i+1]\) cont’ d.

Example cont’ d: to arrive in state 01 at time i+1, either

1) The transmitter was in state 10 at time i and the i\(^{th}\) message bit was a 0. If that’s the case, the transmitter sent 10 as the parity bits and there was 1 bit error since we received 00. Total bit errors = PM[10,i] + 1 = 4

OR

2) The transmitter was in state 11 at time i and the i\(^{th}\) message bit was a 0. If that’s the case, the transmitter sent 01 as the parity bits and there was 1 bit error since we received 00. Total bit errors = PM[11,i] + 1 = 3

Which is more likely?
Computing PM[s, i+1] cont’d.

Formalizing the computation:

\[
PM[s, i+1] = \min(PM[\alpha, i] + BM[\alpha \rightarrow s], \\
PM[\beta, i] + BM[\beta \rightarrow s])
\]

Example:

\[
PM[01, i+1] = \min(PM[10, i] + 1, \\
PM[11, i] + 1)
\]

\[
= \min(3+1, 2+1) = 3
\]

Notes:

1) Remember which arc was min; saved arcs will form a path through trellis

2) If both arcs have same sum, break tie arbitrarily (e.g., when computing PM[11, i+1])
Hard-Decision Viterbi Decoding

A walk through the trellis

- Path metric: number of errors on maximum-likelihood path to given state (min of all paths leading to state)
- Branch metric: for each arrow, the Hamming distance between received parity and expected parity
Post-decoding BER v. or BSC error prob.

All codes except (7,4) Hamming code are rate-1/2 (so don’t assume it’s bad; it actually is better than (8,4) rect parity and one of the conv. codes

Bottom 2 curves: “good” conv codes
Pink curve: “bad” conv code
What makes a code “good”?
Soft Decoding Beats Hard Decoding

2 dB improvement
Spot Quiz Time...

1. What are the path metrics for the empty boxes (top to bottom order)?
2. What is the most-likely state after time step 6?
3. If the decoder had stopped after time step 2 and returned the most-likely message, what would the bits of the message be (careful about order!)?