

INTRODUCTION TO EECS II DIGITAL COMMUNICATION SYSTEMS

6.02 Fall 2012 Lecture \#10

- Linear time-invariant (LTI) models
- Convolution

Modeling Channel Behavior

codeword
bits in

$1001110101 \rightarrow$| digitized |
| :---: |
| symbols |

NOISY \& DISTORTING ANALOG CHANNEL

1001110101 codeword bits out

The Baseband** Channel

A discrete-time signal such as $\mathrm{x}[\mathrm{n}]$ or $\mathrm{y}[\mathrm{n}]$ is described by an infinite sequence of values, i.e., the time index n takes values in $-\infty$ to $+\infty$. The above picture is a snapshot at a particular time n.

In the diagram above, the sequence of output values $\mathrm{y}[$.$] is$ the response of system S to the input sequence $\mathrm{x}[$.

The system is causal if $y[k]$ depends only on $x[j]$ for $j \leq k$
**From before the modulator till after the demodulator \&o filter

Time Invariant Systems

Let $y[n]$ be the response of S to input $x[n]$.
If for all possible sequences $\mathrm{x}[\mathrm{n}]$ and integers N

then system S is said to be time invariant (TI). A time shift in the input sequence to S results in an identical time shift of the output sequence.

In particular, for a TI system, a shifted unit sample function $\delta[n-N]$ at the input generates an identically shifted unit sample response $h[n-N]$ at the output.

Linear Systems

Let $y_{1}[n]$ be the response of S to an arbitrary input $x_{1}[n]$ and $y_{2}[n]$ be the response to an arbitrary $x_{2}[n]$.

If, for arbitrary scalar coefficients a and b, we have:

$$
a x_{1}[n]+b x_{2}[n] \longrightarrow \mathrm{S} \longrightarrow a y_{1}[n]+b y_{2}[n]
$$

then system S is said to be linear. If the input is the weighted sum of several signals, the response is the superposition (i.e., same weighted sum) of the response to those signals.

One key consequence: If the input is identically 0 for a linear system, the output must also be identically 0 .

Unit Sample and Unit Step Responses

The unit sample response of a system S is the response of the system to the unit sample input. We will always denote the unit sample response as $\mathrm{h}[\mathrm{n}]$.

Similarly, the unit step response $\mathrm{s}[\mathrm{n}]$:

Relating $\mathrm{h}[\mathrm{n}]$ and $\mathrm{s}[\mathrm{n}]$ of an LTI System

$h[n]$

$h[n]$

$\mathrm{s}[\mathrm{n}]$

$h[n]$

$\mathrm{s}[\mathrm{n}]$

$$
-u[n-24]
$$

Unit Step Decomposition

"Rectangular-wave" digital signaling waveforms, of the sort we have been considering, are easily decomposed into timeshifted, scaled unit steps --- each transition corresponds to another shifted, scaled unit step.
e.g., if $x[n]$ is the transmission of 1001110 using 4 samples/bit:
$x[n]$
$=u[n]$
$-u[n-4]$
$+u[n-12]$
$-u[n-24]$

... so the corresponding response is

$x[n]$

$$
=u[n]
$$

$$
-u[n-4]
$$

$$
+u[n-12]
$$

$$
-u[n-24]
$$

$$
\begin{aligned}
& y[n] \\
& \qquad \begin{array}{l}
=s[n] \\
\\
\quad-s[n-4] \\
\\
\quad+\quad s[n-12] \\
\\
\quad-s[n-24]
\end{array}
\end{aligned}
$$

Note how we have invoked linearity and time invariance!

Example

Transmission Over a Channel

$x[n]$ at 8 samples/bit

Receiving the Response

Digitization threshold $=0.5 \mathrm{~V}$

Faster Transmission

$x[n]$ at 4 samples/bit

$$
y[n]=x[n] * h_{4}[n]
$$

$x[-1] \delta[n+1]$

$x[1] \delta[n-1]$

Unit Sample Decomposition

A discrete-time signal can be decomposed into a sum of time-shifted, scaled unit samples.

Example: in the figure, $\mathrm{x}[\mathrm{n}]$ is the sum of $\mathrm{x}[-2] \delta[\mathrm{n}+2]+\mathrm{x}[-1] \delta[\mathrm{n}+1]+\ldots+\mathrm{x}[2] \delta[\mathrm{n}-2]$.

In general:

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$

For any particular index, only one term of this sum is non-zero

Modeling LTI Systems

If system S is both linear and time-invariant (LTI), then we can use the unit sample response to predict the response to any input waveform $\mathrm{x}[\mathrm{n}]$:

Sum of shifted, scaled unit samples

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k] \longrightarrow \mathrm{S} \longrightarrow y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

CONVOLUTION SUM
Indeed, the unit sample response $\mathrm{h}[\mathrm{n}]$ completely characterizes the LTI system S, so you often see

Convolution

Evaluating the convolution sum

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

for all n defines the output signal y in terms of the input x and unit-sample response h . Some constraints are needed to ensure this infinite sum is well behaved, i.e., doesn't "blow up" --- we'll discuss this later.

We use * to denote convolution, and write $y=x * h$. We can then write the value of y at time n , which is given by the above sum, as $y[n]=(x * h)[n]$. We could perhaps even write $y[n]=x * h[n]$

Convolution

Evaluating the convolution sum

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

for all n defines the output signal y in terms of the input x and unit-sample response h. Some constraints are needed to ensure this infinite sum is well behaved, i.e., doesn't "blow up" --- we'll discuss this later.

We use * to denote convolution, and write $y=x * h$. We can thus write the value of y at time n , which is given by the above sum, as $y[n]=(x * h)[n]$

Instead you'll find people writing $y[n]=x[n] * h[n]$, where the poor index n is doing double or triple duty. This is awful notation, but a super-majority of engineering professors (including at MIT) will inflict it on their students.

Don't stand for it!

Properties of Convolution

$$
(x * h)[n] \equiv \sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{m=-\infty}^{\infty} h[m] x[n-m]
$$

The second equality above establishes that convolution is commutative:

$$
x * h=h * x
$$

Convolution is associative:

$$
x *\left(h_{1} * h_{2}\right)=\left(x * h_{1}\right) * h_{2}
$$

Convolution is distributive:

$$
x *\left(h_{1}+h_{2}\right)=\left(x * h_{1}\right)+\left(x * h_{2}\right)
$$

Series Interconnection of LTI Systems

$$
\begin{aligned}
& \mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{h}_{1}[\cdot] \\
& y=h_{2} * w=h_{2} *\left(h_{1} * x\right)=\left(h_{2} * h_{1}\right) * x \\
& \mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{y}[\mathrm{n}] \\
& \mathrm{x}[\mathrm{n}]\left.\longrightarrow \mathrm{h}_{2} * \mathrm{~h}_{1}\right)[\cdot] \longrightarrow \mathrm{y}[\mathrm{n}] \\
&\left.\mathrm{x} \cdot \mathrm{~h}_{1} * \mathrm{~h}_{2}\right)[\cdot] \longrightarrow \mathrm{y}[\mathrm{n}] \\
& \mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{h}_{2}[\cdot]
\end{aligned} \mathrm{h}_{1}[\cdot] \longrightarrow \mathrm{y}[\mathrm{n}] \mathrm{l}
$$

Spot Quiz

input

response
Unit step response: $\mathrm{s}[\mathrm{n}]$

Find $y[n]$:
$\mathrm{x}[\mathrm{n}]$

1. Write $\mathrm{x}[\mathrm{n}]$ as a function of unit steps
2. Write $\mathrm{y}[\mathrm{n}]$ as a function of unit step responses
3. Draw y[n]
