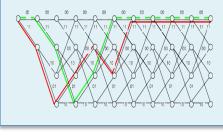


rf (freq. domain)

-20



INTRODUCTION TO EECS II DIGITAL COMMUNICATION SYSTEMS

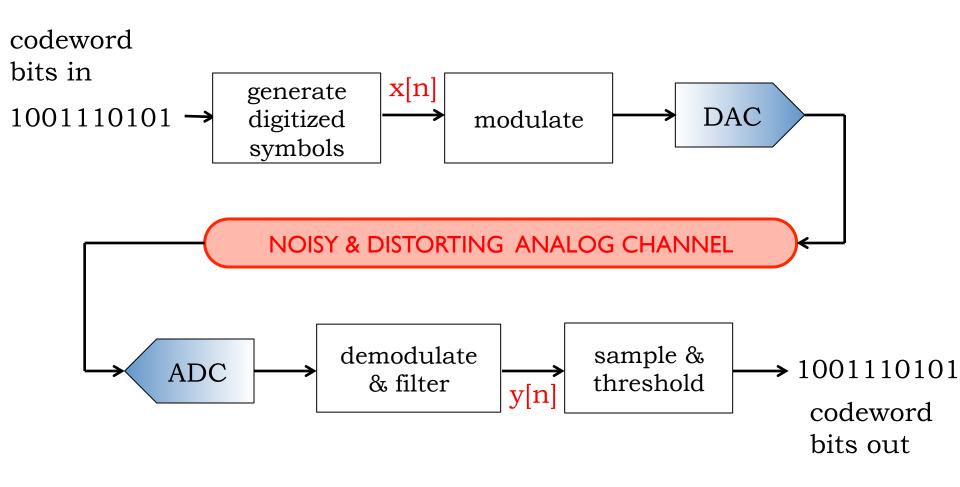
6.02 Fall 2012 Lecture #10

- Linear time-invariant (LTI) models
- Convolution

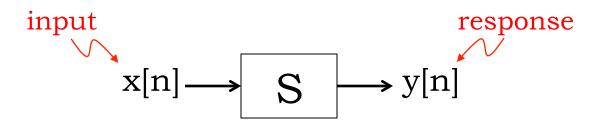
6.02 Fall 2012

Lecture 10, Slide #1

Modeling Channel Behavior



The **Baseband**** Channel



A discrete-time signal such as x[n] or y[n] is described by an infinite sequence of values, i.e., the time index n takes values in $-\infty$ to $+\infty$. The above picture is a snapshot at a particular time n.

In the diagram above, the sequence of *output* values y[.] is the *response* of system S to the *input* sequence x[.]

The system is causal if y[k] depends only on x[j] for $j \le k$

**From before the modulator till after the demodulator & filter

Time Invariant Systems

Let y[n] be the response of S to input x[n].

If for all possible sequences x[n] and integers N

$$x[n-N] \longrightarrow S \longrightarrow y[n-N]$$

then system S is said to be *time invariant* (TI). A time shift in the input sequence to S results in an identical time shift of the output sequence.

In particular, for a TI system, a shifted unit sample function $\delta[n-N]$ at the input generates an identically shifted unit sample response h[n-N] at the output.

Linear Systems

Let $y_1[n]$ be the response of S to an arbitrary input $x_1[n]$ and $y_2[n]$ be the response to an arbitrary $x_2[n]$.

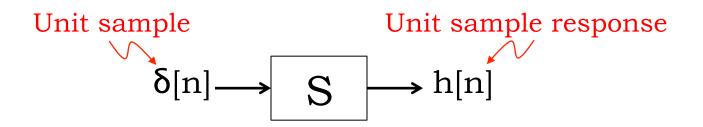
If, for arbitrary scalar coefficients *a* and *b*, we have:

$$ax_1[n] + bx_2[n] \longrightarrow S \longrightarrow ay_1[n] + by_2[n]$$

then system S is said to be *linear*. If the input is the weighted sum of several signals, the response is the *superposition* (i.e., same weighted sum) of the response to those signals.

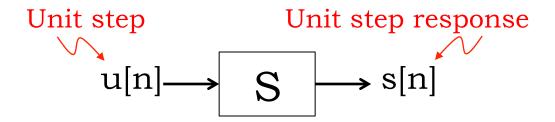
One key consequence: If the input is identically 0 for a linear system, the output must also be identically 0.

Unit Sample and Unit Step Responses

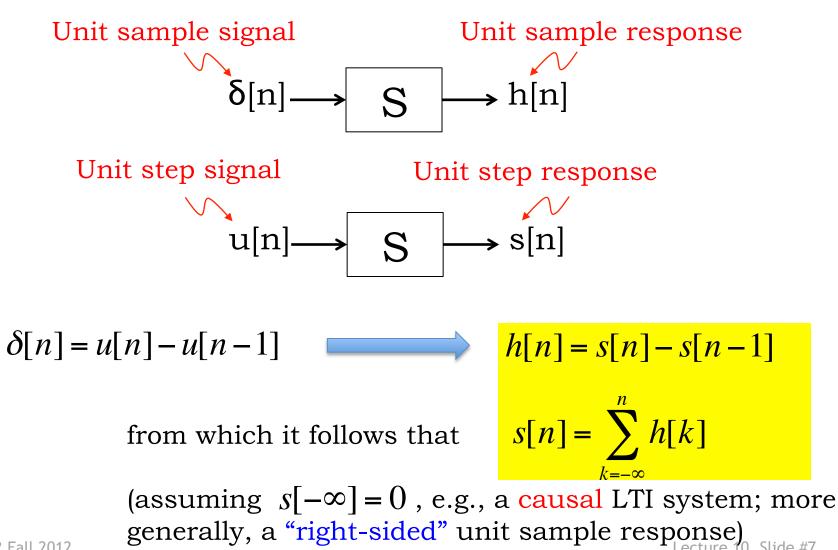


The *unit sample response* of a system S is the response of the system to the unit sample input. We will always denote the unit sample response as h[n].

Similarly, the *unit step response* s[n]:

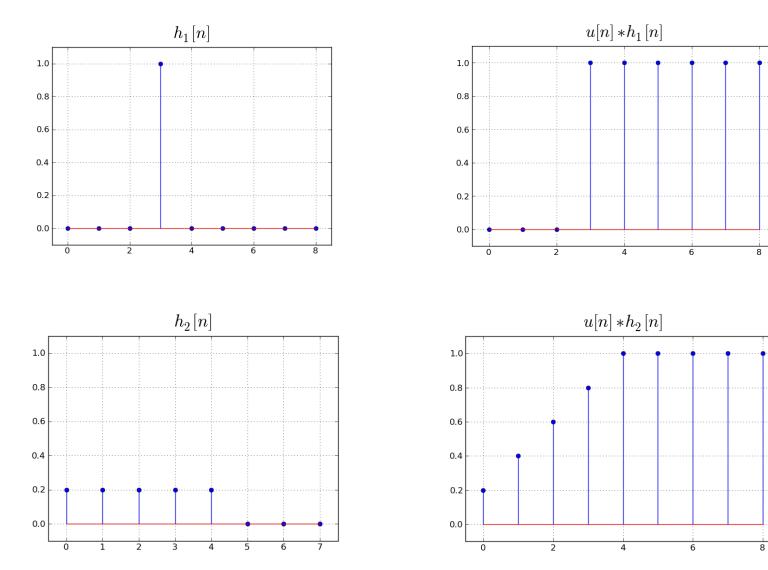


Relating h[n] and s[n] of an LTI System



h[n]

s[n]

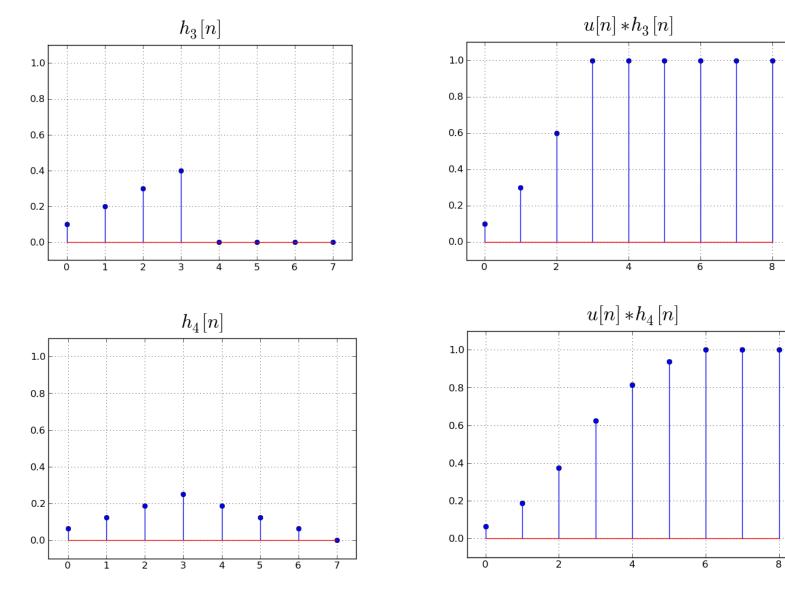


6.02 Fall 2012

Lecture 10, Slide #8

h[n]

s[n]

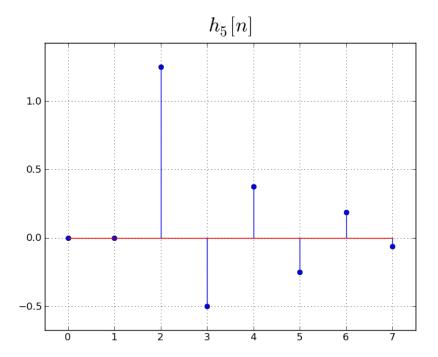


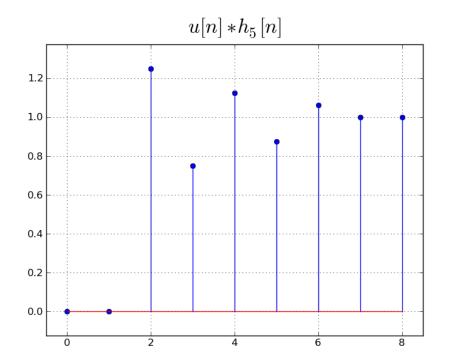
6.02 Fall 2012

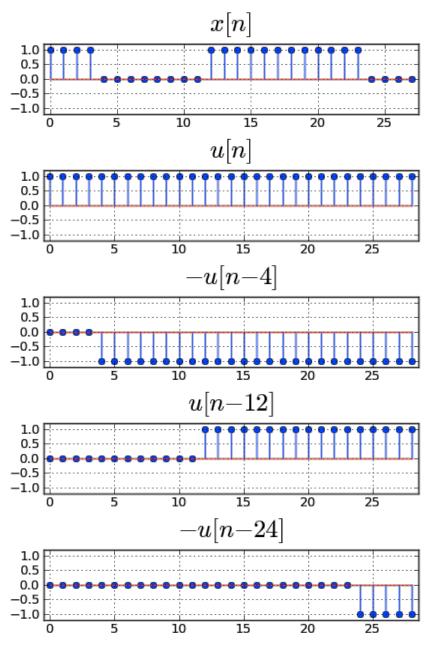
Lecture 10, Slide #9

h[n]

s[n]







Unit Step Decomposition

"Rectangular-wave" digital signaling waveforms, of the sort we have been considering, are easily decomposed into timeshifted, scaled unit steps --- each transition corresponds to another shifted, scaled unit step.

e.g., if x[n] is the transmission of 1001110 using 4 samples/bit:

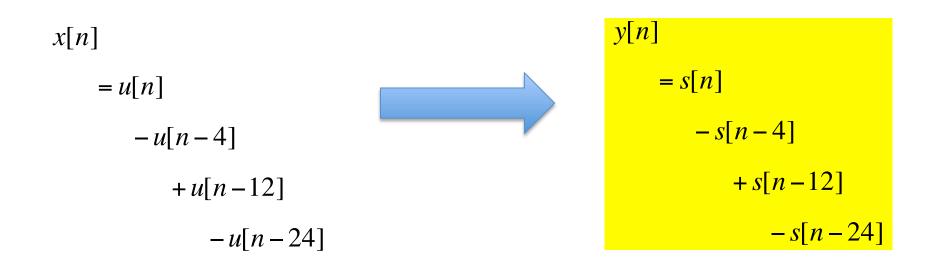
x[n]

= u[n]

-*u*[*n*-4]

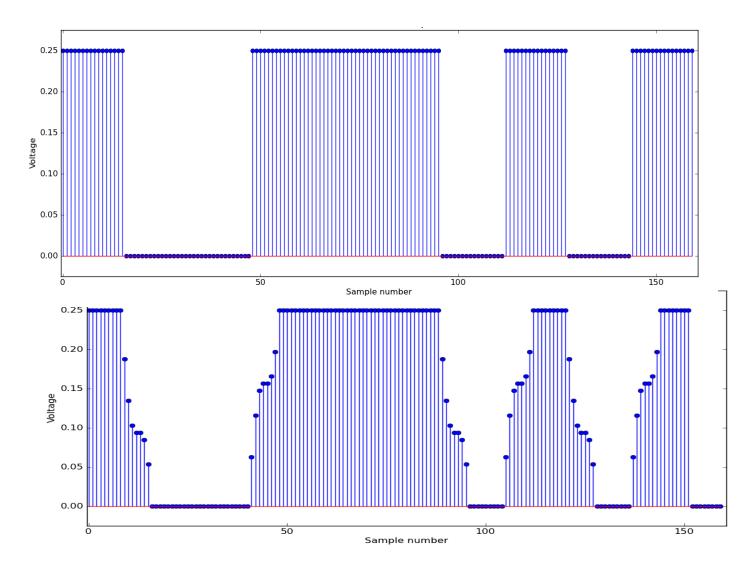
-u[n-24] Lecture 10, Slide #11

... so the corresponding response is

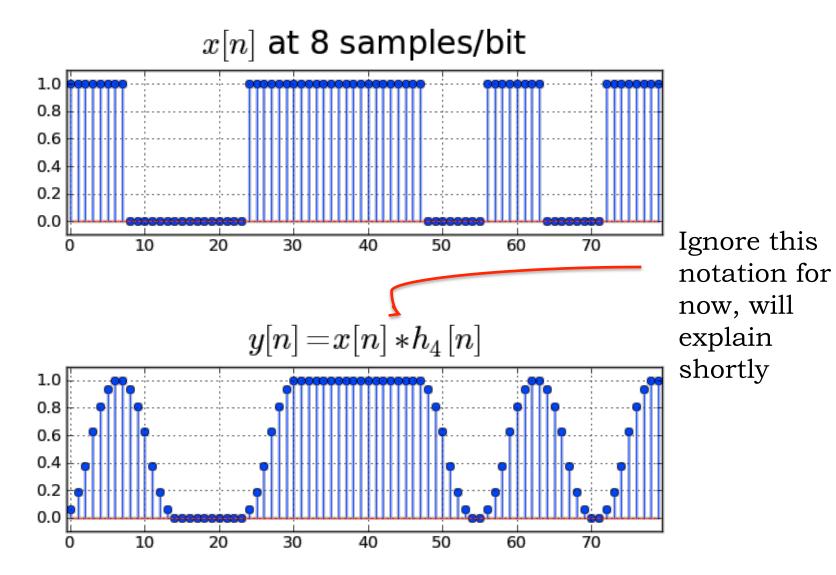


Note how we have invoked linearity and time invariance!

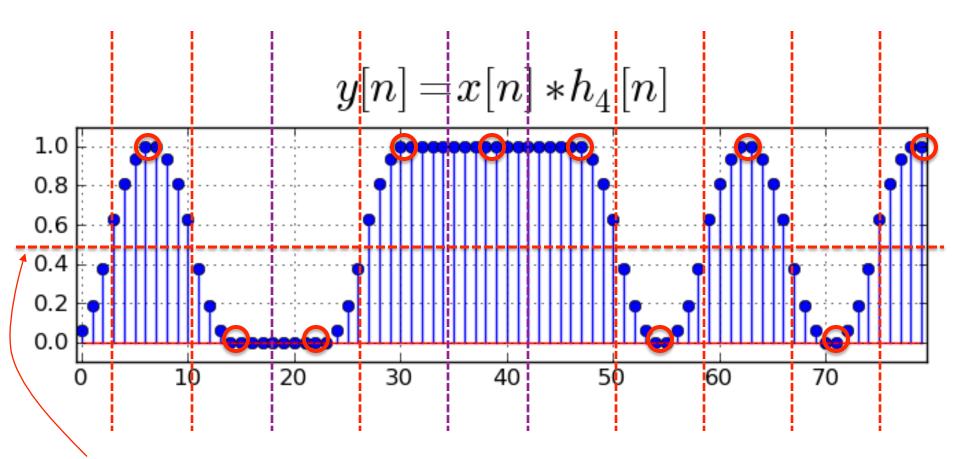
Example



Transmission Over a Channel

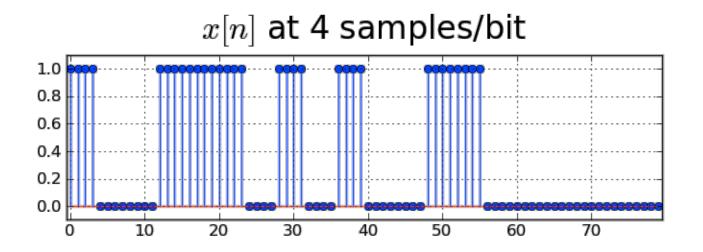


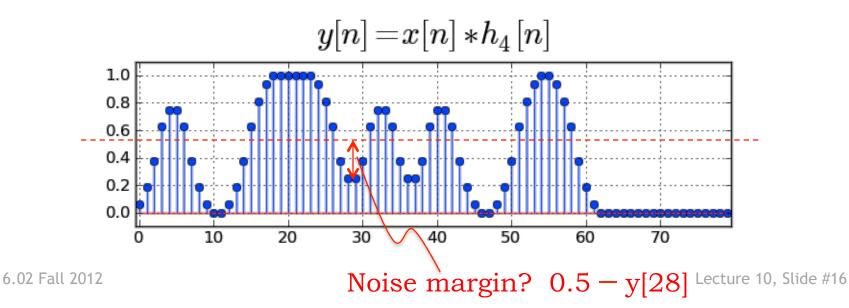
Receiving the Response

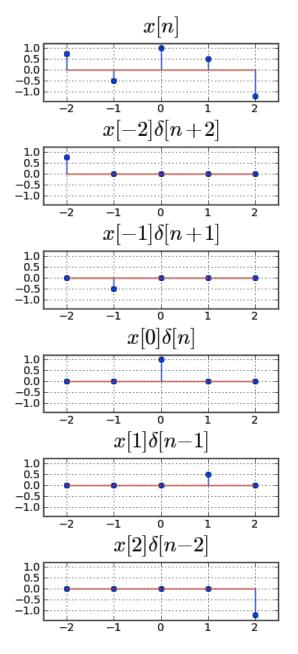


Digitization threshold = 0.5V

Faster Transmission







Unit Sample Decomposition

A discrete-time signal can be decomposed into a sum of time-shifted, scaled unit samples.

Example: in the figure, x[n] is the sum of $x[-2]\delta[n+2] + x[-1]\delta[n+1] + ... + x[2]\delta[n-2]$.

In general:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

For any particular index, only
one term of this sum is non-zero

Lecture 10, Slide #17

Modeling LTI Systems

If system S is both linear and time-invariant (LTI), then we can use the unit sample response to predict the response to *any* input waveform x[n]:

Sum of shifted, scaled unit samples

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k] \longrightarrow S \longrightarrow y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
CONVOLUTION SUM

Indeed, the unit sample response h[n] completely characterizes the LTI system S, so you often see

$$\mathbf{x}[n] \longrightarrow h[.] \longrightarrow \mathbf{y}[n]$$

Convolution

Evaluating the convolution sum

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

for all n defines the output signal y in terms of the input x and unit-sample response h. Some constraints are needed to ensure this infinite sum is well behaved, i.e., doesn't "blow up" --- we'll discuss this later.

We use * to denote convolution, and write y=x*h. We can then write the value of y at time n, which is given by the above sum, as y[n] = (x*h)[n]. We could perhaps even write y[n] = x*h[n]

Convolution

Evaluating the convolution sum

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

for all n defines the output signal y in terms of the input x and unit-sample response h. Some constraints are needed to ensure this infinite sum is well behaved, i.e., doesn't "blow up" --- we'll discuss this later.

We use * to denote convolution, and write y=x*h. We can thus write the value of y at time n, which is given by the above sum, as y[n] = (x*h)[n]

Instead you'll find people writing y[n] = x[n] * h[n], where the poor index n is doing double or triple duty. This is **awful** notation, but a super-majority of engineering professors (including at MIT) will inflict it on their students.

Don't stand for it!

Properties of Convolution

$$(x*h)[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$

The second equality above establishes that convolution is **commutative**:

$$x * h = h * x$$

Convolution is associative:

$$x * (h_1 * h_2) = (x * h_1) * h_2$$

Convolution is distributive:

$$x * (h_1 + h_2) = (x * h_1) + (x * h_2)$$

Series Interconnection of LTI Systems

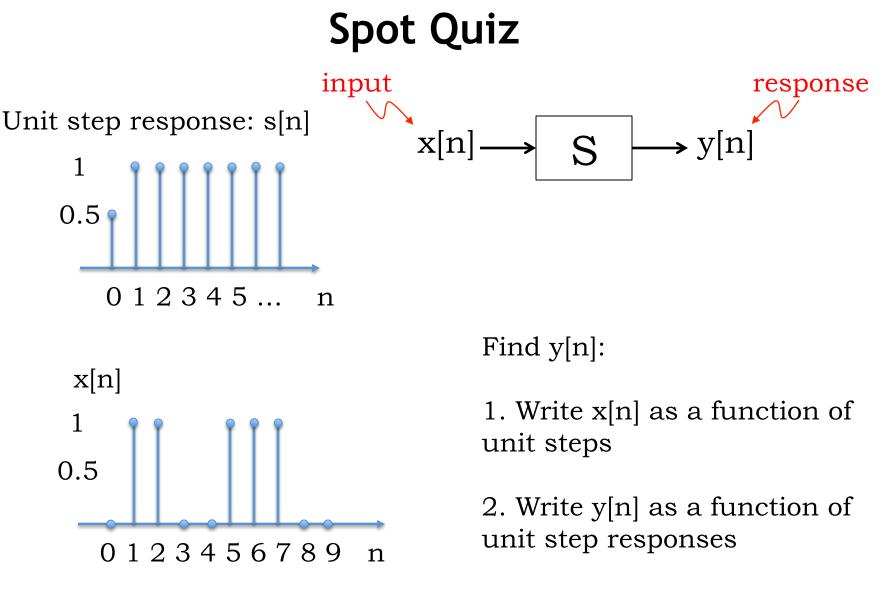
$$\mathbf{x}[\mathbf{n}] \longrightarrow \begin{array}{c} \mathbf{h}_1[.] \end{array} \xrightarrow{\mathbf{w}[\mathbf{n}]} \begin{array}{c} \mathbf{h}_2[.] \end{array} \longrightarrow \mathbf{y}[\mathbf{n}] \end{array}$$

$$y = h_2 * w = h_2 * (h_1 * x) = (h_2 * h_1) * x$$

$$\mathbf{x}[\mathbf{n}] \longrightarrow \qquad (\mathbf{h}_2 * \mathbf{h}_1)[.] \longrightarrow \mathbf{y}[\mathbf{n}]$$

$$\mathbf{x}[\mathbf{n}] \longrightarrow (\mathbf{h}_1 * \mathbf{h}_2)[.] \longrightarrow \mathbf{y}[\mathbf{n}]$$

$$\mathbf{x}[\mathbf{n}] \longrightarrow \mathbf{h}_2[.] \longrightarrow \mathbf{h}_1[.] \longrightarrow \mathbf{y}[\mathbf{n}]$$



3. Draw y[n]