

INTRODUCTION TO EECS II DIGITAL COMMUNICATION systems

6.02 Fall 2012 Lecture \#11

- Eye diagrams
- Alternative ways to look at convolution

Eye Diagrams

Eye diagrams make it easy to find the worst-case signaling conditions at the receiving end.

"Width" of Eye

To maximize noise margins:
Pick the best sample point \rightarrow widest point in the eye
Pick the best digitization threshold \rightarrow half-way across width

Choosing Samples/Bit

Given $\mathrm{h}[\mathrm{n}$], you can use the eye diagram to pick the number of samples transmitted for each bit (N):

Reduce N until you reach the noise margin you feel is the minimum acceptable value.

Example: "ringing" channel

Constructing the Eye Diagram
 (no need to wade through all this unless you really want to!)

1. Generate an input bit sequence pattern that contains all possible combinations of B bits (e.g., $B=3$ or 4), so a sequence of $2^{B} B$ bits. (Otherwise, a random sequence of comparable length is fine.)
2. Transmit the corresponding $x[n]$ over the channel ($2^{B} B N$ samples, if there are N samples/bit)
3. Instead of one long plot of $\mathrm{y}[\mathrm{n}]$, plot the response as an eye diagram:
a. break the plot up into short segments, each containing KN samples, starting at sample 0, KN, 2KN, 3KN, ... (e.g., K=2 or 3)
b. plot all the short segments on top of each other

Back To Convolution

From last lecture: If system S is both linear and time-invariant (LTI), then we can use the unit sample response $h[n]$ to predict the response to any input waveform $\mathrm{x}[\mathrm{n}]$:

Sum of shifted, scaled unit sample
Sum of shifted, scaled unit sample functions responses, with the same scale factors

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k] \longrightarrow \mathrm{S} \longrightarrow y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

CONVOLUTION SUM
Indeed, the unit sample response $\mathrm{h}[\mathrm{n}]$ completely characterizes the LTI system S , so you often see

Unit Sample Response of a Scale-\&-Delay System

If S is a system that scales the input by A and delays it by D time steps (negative 'delay' $\mathrm{D}=$ advance), is the system
time-invariant? Yes!

$$
\text { linear? } \quad \text { Yes! }
$$

Unit sample response is $h[n]=A \delta[n-D]$
General unit sample response

$$
h[n]=\ldots+h[-1] \delta[n+1]+h[0] \delta[n]+h[1] \delta[n-1]+\ldots
$$

for an LTI system can be thought of as resulting from many scale-\&-delays in parallel

A Complementary View of Convolution

So instead of the picture:

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k] \longrightarrow \mathrm{h}[.] \longrightarrow y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

we can consider the picture:

from which we get $y[n]=\sum_{m=-\infty}^{\infty} h[m] x[n-m]$
(To those who have an eye for these things, my apologies
6.02 Fall 2012 for the varied math font --- too hard to keep uniform!) Lecture 11, Slide \#9

(side by side)

$$
\begin{aligned}
& y[n]= \\
& (x * h)[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{m=-\infty}^{\infty} h[m] x[n-m]=(h * x)[n] \\
& \text { Input term } x[0] \text { at } \\
& \text { time } 0 \text { launches } \\
& \text { scaled unit sample } \\
& \text { response } x[0] h[n] \text { at } \\
& \text { output } \\
& \text { Input term } \mathrm{x}[\mathrm{k}] \text { at } \\
& \text { time } \mathrm{k} \text { launches } \\
& \text { scaled shifted unit } \\
& \text { sample response } \\
& \mathrm{x}[\mathrm{k}] \mathrm{h}[\mathrm{n}-\mathrm{k}] \text { at output } \\
& \text { Unit sample response } \\
& \text { term h[0] at time } 0 \\
& \text { contributes scaled input } \\
& \mathrm{h}[0] \mathrm{x}[\mathrm{n}] \text { to output } \\
& \text { Unit sample response } \\
& \text { term h[m] at time m } \\
& \text { contributes scaled shifted } \\
& \text { input } \mathrm{h}[\mathrm{~m}] \mathrm{x}[\mathrm{n}-\mathrm{m}] \\
& \text { to output }
\end{aligned}
$$

To Convolve (but not to "Convolute"!)

$$
\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{m=-\infty}^{\infty} h[m] x[n-m]
$$

A simple graphical implementation:
Plot $\mathrm{x}[$.$] and \mathrm{h}[$.$] as a function of the dummy index$ (k or m above)

Flip (i.e., reverse) one signal in time, slide it right by n (slide left if n is - ve), take the dot.product with the other.

This yields the value of the convolution at the single time n .
'flip one \& slide by n.... dot.product with the other'

Example

- From the unit sample response $\mathrm{h}[\mathrm{n}]$ to the unit step response

$$
s[n]=(h * u)[n]
$$

- Flip $u[k]$ to get $u[-k]$
- Slide $u[-k] n$ steps to right (i.e., delay $u[-k]$) to get $u[n-k]$), place over h[k]
- Dot product of $h[k]$ and $u[n-k]$ wrt k :

$$
S[n]=\sum_{k=-\infty}^{n} h[k]
$$

Channels as LTI Systems

Many transmission channels can be effectively modeled as LTI systems. When modeling transmissions, there are few simplifications we can make:

- We'll call the time transmissions start $\mathrm{t}=0$; the signal before the start is 0 . So $\mathrm{x}[\mathrm{m}]=0$ for $\mathrm{m}<0$.
- Real-word channels are causal: the output at any time depends on values of the input at only the present and past times. So $\mathrm{h}[\mathrm{m}]=0$ for $\mathrm{m}<0$.

These two observations allow us to rework the convolution sum when it's used to describe transmission channels:

$$
\begin{gathered}
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=0}^{\infty} x[k] h[n-k]=\sum_{k=0}^{n} x[k] h[n-k]=\sum_{j=0}^{n} x[n-j] h[j] \\
6.02 \text { Fall } 2012 \quad \text { start at } \mathrm{t}=0 \quad \text { causal } \quad j=\mathrm{n}-\mathrm{k} \text { Lecture } 11 \text {, slide \#13 }
\end{gathered}
$$

Properties of Convolution

$$
(x * h)[n] \equiv \sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{m=-\infty}^{\infty} h[m] x[n-m]
$$

The second equality above establishes that convolution is commutative:

$$
x * h=h * x
$$

Convolution is associative:

$$
x *\left(h_{1} * h_{2}\right)=\left(x * h_{1}\right) * h_{2}
$$

Convolution is distributive:

$$
x *\left(h_{1}+h_{2}\right)=\left(x * h_{1}\right)+\left(x * h_{2}\right)
$$

Series Interconnection of LTI Systems

$$
\begin{aligned}
& \mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{h}_{1}[\cdot] \\
& y=h_{2} * w=h_{2} *\left(h_{1} * x\right)=\left(h_{2} * h_{1}\right) * x \\
& \mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{y}[\mathrm{n}] \\
& \mathrm{x}[\mathrm{n}]\left.\longrightarrow \mathrm{h}_{2} * \mathrm{~h}_{1}\right)[\cdot] \longrightarrow \mathrm{y}[\mathrm{n}] \\
&\left.\mathrm{x} \cdot \mathrm{~h}_{1} * \mathrm{~h}_{2}\right)[\cdot] \longrightarrow \mathrm{y}[\mathrm{n}] \\
& \mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{h}_{2}[\cdot]
\end{aligned} \mathrm{h}_{1}[\cdot] \longrightarrow \mathrm{y}[\mathrm{n}] \mathrm{l}
$$

"Deconvolving" Output of Echo Channel

Suppose channel is LTI with

$$
\mathrm{h}_{1}[\mathrm{n}]=\delta[\mathrm{n}]+0.8 \delta[\mathrm{n}-1]
$$

Find $h_{2}[n]$ such that $z[n]=x[n]$

$$
\left(\mathrm{h}_{2}{ }^{*} \mathrm{~h}_{1}\right)[\mathrm{n}]=\delta[\mathrm{n}]
$$

Good exercise in applying Flip/Slide/Dot.Product

"Deconvolving" Output of Channel with Echo

Even if channel was well modeled as LTI and $h_{1}[n]$ was known, noise on the channel can greatly degrade the result, so this is usually not practical.

Parallel Interconnection of LTI Systems

$$
\begin{gathered}
y=y_{1}+y_{2}=\left(h_{1} * x\right)+\left(h_{2} * x\right)=\left(h_{1}+h_{2}\right) * x \\
\mathrm{x}[\mathrm{n}] \longrightarrow\left(\mathrm{h}_{1}+\mathrm{h}_{2}\right)[\cdot] \longrightarrow \mathrm{y}[\mathrm{n}]
\end{gathered}
$$

