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•  Bounded-input, bounded-output stability 
•  Frequency response  
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What ensures that the infinite sum 
 
 
is well-behaved? 
 
One important case:  If the unit sample response is absolutely 
summable, i.e., 
 
 
and the input is bounded, i.e.,  
 

Bounded-Input Bounded-Output (BIBO) 
Stability 

y[n]= h[m]x[n!m]
m=!"

"

#

| h[m]
m=!"
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# | !<!"

| x[k] |!!M <"

Under these conditions, the convolution sum is well-behaved, 
and the output is guaranteed to be bounded. 
 
The absolute summability of h[n] is necessary and sufficient 
for this bounded-input bounded-output (BIBO) stability. 
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Time now for a Frequency-Domain Story 
 

in which  
convolution  

is transformed to  
multiplication, 

and other  
good things 

happen 
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A First Step 

Do periodic inputs to an LTI system, i.e., x[n] such that  
 
       x[n+P] = x[n] for all n, some fixed P 
 
(with P usually picked to be the smallest positive integer 
for which this is true) yield periodic outputs? If so, of  
period P? 

Yes! --- use Flip/Slide/Dot.Product to see  
this easily: sliding by P gives the same picture 
back again, hence the same output value. 
 
Alternate argument: Since the system is TI, using 
input x delayed by P should yield y delayed by P. But 
x delayed by P is x again, so y delayed by P must be y. 
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But much more is true for  
Sinusoidal Inputs to LTI Systems 

Sinusoidal inputs, i.e., 
 

    x[n] = cos(Ωn + θ) 
 
yield sinusoidal outputs at the same ‘frequency’ Ω rads/sample. 

And observe that such inputs are not even periodic 
in general!  
 
Periodic if and only if 2π/Ω is rational, =P/Q for some  
integers P(>0), Q. The smallest such P is the period.  
 
Nevertheless, we often refer to 2π/Ω as the ‘period’ of this  
sinusoid, whether or not it is a periodic discrete-time 
sequence. This is the period of an underlying  
continuous-time signal.  
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Examples 

cos(3πn/4) has frequency 3π/4 rad/sample, and  
period 8; shifting by integer multiples of 8 yields the same 
sequence back again, and no integer smaller than  
8 accomplishes this. 

cos(3n/4) has frequency ¾ rad/sample, and is not periodic as  
a DT sequence because 8π/3 is irrational, but we could 
still refer to 8π/3 as its ‘period’, because we can 
think of the sequence as arising from sampling the  
periodic continuous-time signal cos(3t/4) at integer t.  
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Sinusoidal Inputs and LTI Systems 

A very important property of LTI systems or channels: 
 

If the input x[n] is a sinusoid of a given amplitude, 
frequency and phase, the response will be a sinusoid at the 
same frequency, although the amplitude and phase may be 
altered.  The change in amplitude and phase will, in 
general, depend on the frequency of the input. 

 
Let’s prove this to be true … but use complex exponentials 
instead, for clean derivations that take care of sines and  
cosines (or sinusoids of arbitrary phase) simultaneously. 

h[n] 
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A related simple case: 
 real discrete-time (DT) exponential 

inputs also produce exponential outputs 
of the same type 

•  Suppose  x[n] = rn   for some real number r 

•    

•  i.e., just a scaled version of the exponential input 

y[n]= h[m]x[n!m]
m=!"
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Complex Exponentials 
A complex exponential is a complex-valued function of a 
single argument – an angle measured in radians.  Euler’s 
formula shows the relation between complex exponentials 
and our usual trig functions: 

e j! = cos(! )+ j sin(! )

cos(! ) = 1
2
e j! + 1

2
e! j! sin(! ) = 1

2 j
e j! ! 1

2 j
e! j!

In the complex plane,                                   is a 
point on the unit circle, at an angle of ϕ with respect 
to the positive real axis. cos and sin are projections on  
real and imaginary axes, respectively. 
 
Increasing ϕ by 2π brings you back to the same point!  
So any function of      only needs to be studied for ϕ in [-π, π] .     

e j! = cos(! )+ j sin(! )

e j!
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Useful Properties of ejφ 

When φ = 0: 

e j0 =1

When φ = ±π: 

e j! = e! j! = !1
e j!n = e! j!n = !1( )n

(More properties later) 
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Frequency Response 

Using the convolution sum we can compute the system’s 
response to a complex exponential (of frequency Ω) as input: 

h[.] A(cosΩn + jsinΩn)=AejΩn y[n] 

y[n]= h[m]x[n!m]
m
"

= h[m]Ae j#(n!m)
m
"

= h[m]e! j#m
m
"
$

%
&
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(
)Ae j#n

= H (#) * x[n]
where we’ve defined the frequency response of the system as 

H (!) " h[m]e# j!m
m
$
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Back to Sinusoidal Inputs 

cos(Ω0n) H(Ω) |H(Ω0)|cos(Ω0n + <H(Ω0)) 

This is IMPORTANT 

Invoking the result for complex exponential inputs, it is 
easy to deduce what an LTI system does to sinusoidal inputs:  
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From Complex Exponentials to 
Sinusoids 

cos(Ωn)=(ejΩn+e-jΩn))/2 
 

cos(Ω0n) H(Ω) |H(Ω0)|cos(Ω0n + <H(Ω0)) 

So response to this cosine input is 

(H(Ω)ejΩn+H(-Ω)e-jΩn))/2 = Real part of H(Ω)ejΩn 
 

                                           = Real part of |H(Ω)|ej(Ωn+<H(Ω))                                
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Example h[n] and H(Ω)   
Sometimes  
written 
as H(ejΩn) 
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Frequency Response of “Moving Average” 
Filters 


