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•  Frequency response  
•  Filters 
•  Spectral content 
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Sinusoidal Inputs and LTI Systems 

A very important property of LTI systems or channels: 
 

If the input x[n] is a sinusoid of a given amplitude, 
frequency and phase, the response will be a sinusoid at the 
same frequency, although the amplitude and phase may be 
altered.  The change in amplitude and phase will, in 
general, depend on the frequency of the input. 

h[n] 
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Complex Exponentials as 
“Eigenfunctions” of LTI System  

h[.] x[n]=ejΩn y[n]=H(Ω)ejΩn 
 

H (!) " h[m]e# j!m
m
$

= h[m]cos(!m)# j h[m]sin(!m)
m
$

m
$

Eigenfunction: Undergoes only scaling -- by the frequency 
response H(Ω) in this case:  

This is an infinite sum in general, but is well behaved if 
h[.] is absolutely summable, i.e., if the system is stable.  

We also call H(Ω) the discrete-time Fourier transform (DTFT) 
of the time-domain function h[.] --- more on the DTFT later. 
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From Complex Exponentials to Sinusoids 

cos(Ωn)=(ejΩn+e-jΩn))/2 
 

Acos(Ω0n+Ø0) H(Ω) |H(Ω0)|Acos(Ω0n+Ø0+<H(Ω0)) 

So response to a cosine input is: 

This gives rise to an easy experimental way to determine  
the frequency response of an LTI system. 

(Recall that we only need vary Ω in the interval [–π,π].)   
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Loudspeaker Frequency Response 
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http://forum.blu-ray.com/showthread.php?t=150915 

Spectral Content of Various Sounds 
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Connection between CT and DT 
The continuous-time (CT) signal  
 

                       x(t) = cos(ωt) = cos(2πft) 
 

sampled every T seconds, i.e., at a sampling 
frequency of fs = 1/T, gives rise to the discrete-time 
(DT) signal 

 

              x[n] = x(nT) =  cos(ωnT) = cos(Ωn) 
 

So                         Ω  = ωΤ	


	


and Ω = π corresponds to ω = π/T or f = 1/(2T) = fs/2 
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Repeats periodically on the frequency (Ω) axis,  with period 2π,  
because the input ejΩn is the same for Ω that differ by 
integer multiples of 2π. So only the interval Ω in [-π,π] is of interest! 
 

                Properties of H(Ω)                      
A little elaboration on                                  
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Repeats periodically on the frequency (Ω) axis,  with period 2π,  
because the input ejΩn is the same for Ω that differ by 
integer multiples of 2π. So only the interval Ω in [-π,π] is of interest! 
 
Ω  = 0, i.e., ejΩn = 1, corresponds to a constant (or “DC”, which  
stands for “direct current”, but now just means constant) input,  
so H(0) is the “DC gain” of the system, i.e., gain for constant inputs. 
                               
                            H(0) = ∑ h[m]     --- show this from the definition!                             
 
 

                Properties of H(Ω)                      
A little elaboration on                                  
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Repeats periodically on the frequency (Ω) axis,  with period 2π,  
because the input ejΩn is the same for Ω that differ by 
integer multiples of 2π. So only the interval Ω in [-π,π] is of interest! 
 
Ω  = 0, i.e., ejΩn = 1, corresponds to a constant (or “DC”, which  
stands for “direct current”, but now just means constant) input,  
so H(0) is the “DC gain” of the system, i.e., gain for constant inputs. 
                               
                            H(0) = ∑ h[m]     --- show this from the definition!                             
 
Ω  = π or ‒π, i.e.,  AejΩn=(-1)nA, corresponds to the  
highest-frequency variation possible for a discrete-time 
signal, so H(π)=H(-π) is the high-frequency gain of the system. 
 
                           H(π) = ∑ (-1)m h[m]   --- show from definition! 
 
 

                Properties of H(Ω)                      
A little elaboration on                                  



6.02 Fall 2012 Lecture 13 Slide #11 

    Symmetry Properties of H(Ω)                    
A little elaboration on                                  

For real h[n]: 
             Real part of H(Ω) & magnitude are EVEN functions of Ω. 
             Imaginary part & phase are ODD functions of Ω. 
 
 
For real and even h[n] = h[–n],    H(Ω) is purely real. 
For real and odd h[n] = –h[–n],   H(Ω) is purely imaginary. 

H (!) " h[m]e# j!m
m
$

= h[m]cos(!m)# j h[m]sin(!m)
m
$

m
$

=C(!)# jS(!)
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Convolution in Time <---> 
Multiplication in Frequency 

h1[.] x[n] h2[.] y[n] 

(h2∗h1)[.] x[n] y[n] 

H1(Ω) x[n] H2(Ω) y[n] 

In the frequency domain (i.e., thinking about input-to-output 
frequency response): 

H(Ω)=H2(Ω)H1(Ω) 

i.e., convolution in time  
has become multiplication  
in frequency! 
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          So: 
                   |H1(Ω)| = [1.64 + 1.6cos(Ω)]1/2      EVEN function of  Ω;	

 
                   <H1(Ω) = arctan [–(0.8sin(Ω)/[1 + 0.8cos(Ω)]      ODD .          

= 
 
= 1+ 0.8e–jΩ = 1 + 0.8cos(Ω) – j0.8sin(Ω)   

h1[m]e
! j"m

m
#

Suppose channel is LTI with  
 

 h1[n]=δ[n]+0.8δ[n-1] 

Example: “Deconvolving” Output of 
Channel with Echo 

Channel, 
   h1[.] 

Receiver 
filter,  h2[.] 

x[n] y[n] z[n] 

H1(Ω) = ?? 
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A Frequency-Domain view of Deconvolution 

Channel, 
   H1(Ω) 

Receiver 
filter, H2(Ω) 
 

x[n] y[n] z[n] 

Given H1(Ω), what should H2(Ω) be, to get z[n]=x[n]?   

H2(Ω)=1/H1(Ω)      “Inverse filter”  

= (1/|H1(Ω)|). exp{–j<H1(Ω)}  

Inverse filter at receiver does very badly in the presence of noise  
that adds to y[n]:  
     filter has high gain for noise precisely at frequencies where  
     channel gain|H1(Ω)| is low (and channel output is weak)! 

Noise w[n] 
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A 10-cent Low-pass Filter 
Suppose we wanted a low-pass filter with a cutoff frequency of π/4? 

Hπ/4(Ω) x[n] Hπ/2(Ω) H3π/4(Ω) Hπ(Ω) y[n] 
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To Get a Filter Section with a  
Specified Zero-Pair in H(Ω) 

•  Let h[0] = h[2] = 1,    h[1] = µ,    all other h[n] = 0 

•  Then H(Ω) = 1 + µe-jΩ + e-j2Ω = e-jΩ (µ + 2cos(Ω)) 

•  So |H(Ω)| = |µ + 2cos(Ω)|, with zeros at  
                                                   ± arccos(-µ/2) 
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The $4.99 version of a Low-pass Filter, 
 h[n] and H(Ω) 
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h[n]= 1
2!

H (!)e j!n
<2!>
" d!

H (!) = h[m]e" j!m
m
#

Multiply both sides by          and integrate over a  
(contiguous) 2π interval. Only one term survives! 

e j!n

Determining h[n] from H(Ω) 

H (!)e j!n
<2!>
" d! = h[m]e# j!(m#n)

m
$

<2!>
" d!

= 2! %h[n]
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Design ideal lowpass filter with cutoff 
frequency ΩC and H(Ω)=1 in passband 

=
1
2!

1!e j"n
#"C

"C

$ d"

=
sin("Cn)
!n

, n % 0

="C /! , n = 0

h[n]= 1
2!

H (!)e j!n
<2!>
" d!

    

DT “sinc” function 
(extends to ±∞ in time, 	

falls off only as 1/n))  
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Exercise: Frequency response of h[n-D] 

Given an LTI system with unit sample response h[n]  
and associated frequency response H(Ω),  
 
determine the frequency response HD(Ω) of an LTI 
system whose unit sample response is  
 
                          hD[n] = h[n-D]. 
 
 

Answer:             HD(Ω) = exp{-jΩD}.Η(Ω)	

	

	

so :             |HD(Ω)| = |Η(Ω)| ,              i.e., magnitude unchanged	


                  <HD(Ω) = -ΩD + <Η(Ω) , i.e., linear phase term added	

 



6.02 Fall 2012 Lecture 13 Slide #21 

e.g.: Approximating an ideal lowpass filter 

–300                0                 300 
                                           n 

   h[n] H[Ω] 

–π               0                 π 
                                       Ω 

Idea: shift h[n] right to get  
causal LTI system. 
Will the result still be a  
lowpass filter? 

Not  
causal 
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Causal approximation to ideal lowpass filter 

0               300                600 
                                        n 

   hC[n]= h[n-300] |HC[Ω]| 

–π               0                 π 
                                       Ω 

Determine <HC(Ω) 



6.02 Fall 2012 Lecture 13 Slide #23 

DT Fourier Transform (DTFT) for  
Spectral Representation of General x[n]   

If we can write 

h[n]= 1
2!

H (!)e j!n
<2!>
" d! H (!) = h[n]e" j!n

n
#where 

then we can write 

x[n]= 1
2!

X(!)e j!n
<2!>
" d! X(!) = x[n]e" j!n

n
#where 

This Fourier representation expresses x[n] as  
a weighted combination of         for all Ω in [–π,π].  e j!n

Any contiguous  
interval of length 
2π 

X(Ωο)dΩ  is the spectral content of x[n]  
in the frequency interval [Ωο, Ωο+ dΩ ]    
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Useful Filters 
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Frequency Response of Channels 


