

INTRODUCTION TO EECS II
DIGITAL
COMMUNICATION sysTems

6.02 Fall 2012 Lecture \#13

- Frequency response
- Filters
- Spectral content

Sinusoidal Inputs and LTI Systems

A very important property of LTI systems or channels:
If the input $\mathrm{x}[\mathrm{n}]$ is a sinusoid of a given amplitude, frequency and phase, the response will be a sinusoid at the same frequency, although the amplitude and phase may be altered. The change in amplitude and phase will, in general, depend on the frequency of the input.

Complex Exponentials as "Eigenfunctions" of LTI System

$$
\mathrm{x}[\mathrm{n}]=\mathrm{e}^{\mathrm{j} \Omega \mathrm{n}} \quad \longrightarrow \mathrm{~h}[\cdot] \quad \mathrm{y}[\mathrm{n}]=\mathrm{H}(\Omega) \mathrm{e}^{\mathrm{j} \Omega \mathrm{n}}
$$

Eigenfunction: Undergoes only scaling -- by the frequency response $\mathrm{H}(\Omega)$ in this case:

$$
\begin{aligned}
& H(\Omega) \equiv \sum_{m} h[m] e^{-j \Omega m} \\
& =\sum_{m} h[m] \cos (\Omega m)-j \sum_{m} h[m] \sin (\Omega m)
\end{aligned}
$$

This is an infinite sum in general, but is well behaved if $h[$.$] is absolutely summable, i.e., if the system is stable.$

We also call $\mathrm{H}(\Omega)$ the discrete-time Fourier transform (DTFT) of the time-domain function $\mathrm{h}[$.$] --- more on the DTFT later.$

From Complex Exponentials to Sinusoids

$$
\cos (\Omega n)=\left(e^{j \Omega n}+e^{-j \Omega n}\right) / 2
$$

So response to a cosine input is:

(Recall that we only need vary Ω in the interval $[-\pi, \pi]$.)
This gives rise to an easy experimental way to determine the frequency response of an LTI system.

Loudspeaker Frequency Response

SPL Versus Frequency
 (Speaker Sensitivity $=85 \mathrm{~dB}$)

Spectral Content of Various Sounds

http://forum.blu-ray.com/showthread.php?t=150915

Connection between CT and DT

The continuous-time (CT) signal

$$
x(t)=\cos (\omega t)=\cos (2 \pi f t)
$$

sampled every T seconds, i.e., at a sampling frequency of $f_{s}=1 / T$, gives rise to the discrete-time (DT) signal

$$
\mathrm{x}[\mathrm{n}]=\mathrm{x}(\mathrm{nT})=\cos (\omega \mathrm{nT})=\cos (\Omega \mathrm{n})
$$

So

$$
\Omega=\omega \mathrm{T}
$$

and $\Omega=\pi$ corresponds to $\omega=\pi / \mathrm{T}$ or $\mathrm{f}=1 /(2 \mathrm{~T})=\mathrm{f}_{\mathrm{s}} / 2$

Properties of $\mathrm{H}(\Omega)$

Repeats periodically on the frequency (Ω) axis, with period 2π, because the input $\mathrm{e}^{\mathrm{j} \Omega \mathrm{n}}$ is the same for Ω that differ by integer multiples of 2π. So only the interval Ω in $[-\pi, \pi]$ is of interest!

Properties of $\mathrm{H}(\Omega)$

Repeats periodically on the frequency (Ω) axis, with period 2π, because the input $\mathrm{e}^{\mathrm{j} \Omega \mathrm{n}}$ is the same for Ω that differ by integer multiples of 2π. So only the interval Ω in $[-\pi, \pi]$ is of interest!
$\Omega=0$, i.e., $\mathrm{e}^{\mathrm{j} \Omega \mathrm{n}}=1$, corresponds to a constant (or "DC", which stands for "direct current", but now just means constant) input, so $H(0)$ is the "DC gain" of the system, i.e., gain for constant inputs.
$H(0)=\sum h[m] \quad---$ show this from the definition!

Properties of $\mathrm{H}(\Omega)$

Repeats periodically on the frequency (Ω) axis, with period 2π, because the input $\mathrm{e}^{\mathrm{j} \Omega \mathrm{n}}$ is the same for Ω that differ by integer multiples of 2π. So only the interval Ω in $[-\pi, \pi]$ is of interest!
$\Omega=0$, i.e., $\mathrm{e}^{\mathrm{j} \Omega \mathrm{n}}=1$, corresponds to a constant (or "DC", which stands for "direct current", but now just means constant) input, so $H(0)$ is the "DC gain" of the system, i.e., gain for constant inputs.

$$
\mathrm{H}(0)=\sum \mathrm{h}[\mathrm{~m}] \quad--- \text { show this from the definition! }
$$

$\Omega=\pi$ or $-\pi$, i.e., $\mathrm{Ae}^{\mathrm{j} \Omega \mathrm{n}}=(-1)^{\mathrm{n}} \mathrm{A}$, corresponds to the highest-frequency variation possible for a discrete-time signal, so $\mathrm{H}(\pi)=\mathrm{H}(-\pi)$ is the high-frequency gain of the system.

$$
H(\pi)=\sum(-1)^{\mathrm{m}} \mathrm{~h}[\mathrm{~m}] \quad--- \text { show from definition! }
$$

Symmetry Properties of $\mathrm{H}(\Omega)$

$$
\begin{aligned}
& H(\Omega) \equiv \sum_{m} h[m] e^{-j \Omega m} \\
& =\sum_{m} h[m] \cos (\Omega m)-j \sum_{m} h[m] \sin (\Omega m) \\
& =C(\Omega)-j S(\Omega)
\end{aligned}
$$

For real h[n]:
Real part of $\mathrm{H}(\Omega)$ \& magnitude are EVEN functions of Ω. Imaginary part \& phase are ODD functions of Ω.

For real and even $\mathrm{h}[\mathrm{n}]=\mathrm{h}[-\mathrm{n}], \quad \mathrm{H}(\Omega)$ is purely real. For real and odd $\mathrm{h}[\mathrm{n}]=-\mathrm{h}[-\mathrm{n}], \quad \mathrm{H}(\Omega)$ is purely imaginary.

Convolution in Time <---> Multiplication in Frequency

In the frequency domain (i.e., thinking about input-to-output frequency response):

Example: "Deconvolving" Output of Channel with Echo

Suppose channel is LTI with

$$
\mathrm{h}_{1}[\mathrm{n}]=\delta[\mathrm{n}]+0.8 \delta[\mathrm{n}-1]
$$

$$
\begin{aligned}
\mathrm{H}_{1}(\Omega)=? ? & =\sum_{m} h_{1}[m] e^{-j \Omega m} \\
& =1+0.8 \mathrm{e}^{-\mathrm{j} \Omega}=1+0.8 \cos (\Omega)-\mathrm{j} 0.8 \sin (\Omega)
\end{aligned}
$$

So:

$$
\begin{aligned}
& \left|\mathrm{H}_{1}(\Omega)\right|=[1.64+1.6 \cos (\Omega)]^{1 / 2} \quad \text { EVEN function of } \Omega \\
& <\mathrm{H}_{1}(\Omega)=\arctan [-(0.8 \sin (\Omega) /[1+0.8 \cos (\Omega)] \quad O D D .
\end{aligned}
$$

A Frequency-Domain view of Deconvolution

Given $H_{1}(\Omega)$, what should $H_{2}(\Omega)$ be, to get $z[n]=x[n]$?

Inverse filter at receiver does very badly in the presence of noise that adds to $\mathrm{y}[\mathrm{n}]$:
filter has high gain for noise precisely at frequencies where channel gain $\left|\mathrm{H}_{1}(\Omega)\right|$ is low (and channel output is weak)!

A 10-cent Low-pass Filter

Suppose we wanted a low-pass filter with a cutoff frequency of $\pi / 4$?

$$
\mathrm{x}[\mathrm{n}] \rightarrow \mathrm{H}_{\pi / 4}(\Omega) \rightarrow \mathrm{H}_{\pi / 2}(\Omega) \rightarrow \mathrm{H}_{3 \pi / 4}(\Omega) \rightarrow \mathrm{H}_{\pi}(\Omega) \rightarrow \mathrm{y}[\mathrm{n}]
$$

To Get a Filter Section with a Specified Zero-Pair in $\mathbf{H}(\mathbf{\Omega})$

- Let $\mathrm{h}[0]=\mathrm{h}[2]=1, \quad \mathrm{~h}[1]=\mu, \quad$ all other $\mathrm{h}[\mathrm{n}]=0$
- Then $H(\Omega)=1+\mu e^{-j \Omega}+e^{-\mathrm{j} 2 \Omega}=\mathrm{e}^{-\mathrm{j} \Omega}(\mu+2 \cos (\Omega))$
- So $|H(\Omega)|=|\mu+2 \cos (\Omega)|$, with zeros at
$\pm \arccos (-\mu / 2)$

The $\$ 4.99$ version of a Low-pass Filter, $h[n]$ and $H(\Omega)$

Determining $\mathrm{h}[\mathrm{n}]$ from $\mathrm{H}(\Omega)$

$$
H(\Omega)=\sum_{m} h[m] e^{-j \Omega m}
$$

Multiply both sides by $e^{j \Omega n}$ and integrate over a (contiguous) 2π interval. Only one term survives!

$$
\begin{gathered}
\int_{<2 \pi>} H(\Omega) e^{j \Omega n} d \Omega=\int_{<2 \pi>} \sum_{m} h[m] e^{-j \Omega(m-n)} d \Omega \\
=2 \pi \cdot h[n]
\end{gathered}
$$

$$
h[n]=\frac{1}{2 \pi} \int_{<2 \pi>} H(\Omega) e^{j \Omega n} d \Omega
$$

Design ideal lowpass filter with cutoff frequency Ω_{c} and $H(\Omega)=1$ in passband

$$
\begin{aligned}
h[n] & =\frac{1}{2 \pi} \int_{<2 \pi>} H(\Omega) e^{j \Omega n} d \Omega \\
& =\frac{1}{2 \pi} \int_{-\Omega_{c}}^{\Omega_{C}} 1 \cdot e^{j \Omega n} d \Omega \\
& =\frac{\sin \left(\Omega_{C} n\right)}{\pi n}, \quad n \neq 0 \\
& =\Omega_{C} / \pi \quad, \quad n=0
\end{aligned}
$$

DT "sinc" function
(extends to $\pm \infty$ in time, falls off only as $1 / n$)

Exercise: Frequency response of h[n-D]

Given an LTI system with unit sample response $\mathrm{h}[\mathrm{n}]$ and associated frequency response $\mathrm{H}(\Omega)$,
determine the frequency response $H_{D}(\Omega)$ of an LTI system whose unit sample response is

$$
\mathrm{h}_{\mathrm{D}}[\mathrm{n}]=\mathrm{h}[\mathrm{n}-\mathrm{D}] .
$$

Answer:

$$
\mathrm{H}_{\mathrm{D}}(\Omega)=\exp \{-\mathrm{j} \Omega \mathrm{D}\} \cdot \mathrm{H}(\Omega)
$$

so :

$$
\begin{aligned}
& \left|\mathrm{H}_{\mathrm{D}}(\Omega)\right|=|\mathrm{H}(\Omega)|, \quad \text { i.e., magnitude unchanged } \\
& <\mathrm{H}_{\mathrm{D}}(\Omega)=-\Omega \mathrm{D}+<\mathrm{H}(\Omega) \text {, i.e., linear phase term added }
\end{aligned}
$$

e.g.: Approximating an ideal lowpass filter

$\mathrm{H}[\Omega]$

Idea: shift h[n] right to get causal LTI system.
Will the result still be a

Causal approximation to ideal lowpass filter

$\left|\mathrm{H}_{\mathrm{C}}[\Omega]\right|$

Determine $<\mathrm{H}_{\mathrm{C}}(\Omega)$

DT Fourier Transform (DTFT) for Spectral Representation of General x[n]

If we can write

$$
h[n]=\frac{1}{2 \pi} \int_{<2 \pi>} H(\Omega) e^{j \Omega n} d \Omega \quad \begin{aligned}
& \text { where } \\
& \text { Any contiguous } \\
& \text { interval of length }
\end{aligned} \quad H(\Omega)=\sum_{n} h[n] e^{-j \Omega n}
$$

$$
x[n]=\frac{1}{2 \pi} \int_{<2 \pi>} X(\Omega) e^{j \Omega n} d \Omega \quad \text { where } \quad X(\Omega)=\sum_{n} x[n] e^{-j \Omega n}
$$

This Fourier representation expresses $\mathrm{x}[\mathrm{n}]$ as a weighted combination of $e^{j \Omega n}$ for all Ω in $[-\pi, \pi]$.
$\mathrm{X}\left(\Omega_{0}\right) \mathrm{d} \Omega$ is the spectral content of $\mathrm{x}[\mathrm{n}]$ in the frequency interval $\left[\Omega_{0}, \Omega_{0}+\mathrm{d} \Omega\right]$

Useful Filters

Frequency Response of Channels

$h[n]$ for slow channel

