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Spectral content via the DTFT



Demo: “Deconvolving” Output of
Channel with Echo

x[n]

S Channel, yn] Receiver z[n]

—> e

h,[.] filter, h,[.]

Suppose channel is LTI with

h,[n]=8[n]+0.83[n-1]

H,(Q) =77 = mlmle’™

= 1+ 0.8e32 =1 + 0.8cos(RQ) — j0.8sin(RQ)

So:
| H,(Q)| =[1.64 + 1.6cos(Q)]}/2  EVEN function of Q;

<H,(Q) = arctan [-(0.8sin(R2)/[1 + 0.8cos(£2)] ODD..



A Frequency-Domain view of Deconvolution

x[n]

Channel,
H, (<)

y[n] R Receiver
filter, H,(<2)

z[n]

Noise w[n]

Given H,(€2), what should H,(€2) be, to get z[n]=x|n|?

>

H,(Q)=1/H,(Q)

“Inverse filter”

= (1/ | Hy(R)]). expi-j<H, (Q)}

Inverse filter at receiver does very badly in the presence of noise

that adds to y[n]:
filter has high gain for noise precisely at frequencies where
channel gain|H;(Q)|is low (and channel output is weak)!



DT Fourier Transform (DTFT) for
Spectral Representation of General x[n]

If we can write

27T

<2m> X Any contiguous

interval of length
then we can write 27T

hin]= L f H(Q)ejgndg where H(Q)= Eh[m]e_jgm

x[n]= L f X(Q)ejgndg where X(Q)= Ex[m]e_jgm

his Fourier representation expresses x[n| as

a weighted combination of ¢/*" for all Qin [-7, 7].

X(€2,)dL is the spectral content of x[n]
in the frequency interval [Q , Q + dQ ]



The spectrum of the exponential signal (0.5)*u[n] is shown over the
frequency range Q = 2xaf in [-4m,47nt], The angle has units of degrees.
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x[n] and X(Q2)
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Input/Output Behavior of
LTI System in Frequency Domain

x[n]=2i [ X(@e""dQ y[n]=i [ HQX(Q)e™"dQ

71 <2m> 2‘7-[ <2m>

—> H(Q) >

=— | Y(Q)e™"dQ
yn] 2ﬂf (Q)e

<27T>

Y(Q)= H(Q)X(Q)
Compare with y[n|=(h*x)[n]
Again, convolution in time

has mapped to
multiplication in frequency



Magnitude and Angle

Y(Q)= H(Q)X(Q)

|

Y(Q) = 1H(Q)I.1 X(Q)|

and

<Y(Q)=< H(Q)+ < X(Q)



Core of the Story

1. A huge class of DT and CT signals

can be written --- using Fourier transforms --- as a

weighted sums of sinusoids (ranging from very slow to very fast)
or (equivalently, but more compactly) complex exponentials.

The sums can be discrete ¥ or continuous | (or both).

2. LTI systems act very simply on sums of sinusoids:
superposition of responses to each sinusoid, with the
frequency response determining the frequency-dependent
scaling of magnitude, shifting in phase.



Loudspeaker Bandpass Frequency Response

SPL (dB)
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Altec iMMmini

Bose SoundDock

888835

315 8§30 1.25K 25
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http:/ /www.pcmag.com/article2/0,2817,1769243,00.asp
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Spectral Content of Various Sounds

Human Voice

Cymbal Cra@lf

Snare Drum
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http:/ /forum.blu-ray.com/showthread.php?t=150915
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Connection between CT and DT

The continuous-time (CT) signal
X(t) = cos(wt) = cos(2nft)

sampled every T seconds, i.e., at a sampling

frequency of {, = 1/T, gives rise to the discrete-time
(DT) signal

x[n] = x(nT) = cos(wnT) = cos(2n)
S0 Q =wT

and Q = corresponds tow=n/Torf=1/(2T) =1,/2



Signal x[n] that has its frequency content
uniformly distributed in [-Q_, Q_]

=— | X(Q)e™"dQ
x[n] e f (£2)e

<2mI>

1
=— [ 1-™dQ
27 iy

_ sin(S2.n)
TN ’

n=0

DT “sinc” function
=Q T n=0 (extends to o in time,
¢ / ’ falls off only as 1/n)



x[n] and X(L2)

causal computed h[n] H(e™)
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X(R2) and x[n]

low-pass h[n]
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high-pass h[n]
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Fast Fourier Transform (FFT) to compute
samples of the DTFT for
signals of finite duration

P-1 | 1 (P/2)-1 _
X(Q,)= E x[mle ™", x[n]=— E X(Q, )e™"
m=0 P k=—P/2

where Q, = k(2n/P), P is some integer (preferably a power of 2)
such that P is longer than the time interval [O,L-1]| over which
x[n] is nonzero, and k ranges from -P/2 to (P/2)-1 (for even P).

Computing these series involves O(P?) operations — when P gets
large, the computations getvery s 1 o w....

Happily, in 1965 Cooley and Tukey published a fast method for
computing the Fourier transform (aka FFT, IFFT), rediscovering
a technique known to Gauss. This method takes O(P log P)
operations.

P=1024, P?>= 1,048,576, P logP = 10,240



Where do the Q, live?
e.g., for P=6 (even)

9_3 Q_Z Q—l g-2() Ql QZ 93
e — T
— T 0 7T
exp(j€2,) exp(j<2)
exp(j 5.23) exp(j<,)
= exp(jQ_;)

exp(jQ_,) exp(j&.,)



Spectrum of Digital Transmissions

transmit @ 7 samples/bit
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Spectrum of Digital Transmissions
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Observations on previous figure

The waveform x[n] cannot vary faster than the step change every 7
samples, so we expect the highest frequency components in the
waveform to have a period around 14 samples. (The is rough and
qualitative, as x|n] is not sinusoidal.)

A period of 14 corresponds to a frequency of 271 /14 = 1 /7, which
is 1/7 of the way from O to the positive end of the frequency axis
at 7 (so k approximately 100/7 or 14 in the figure). And that
indeed is the neighborhood of where the Fourier coefficients drop
off significantly in magnitude.

There are also lower-frequency components corresponding to the
fact that the 1 or O level may be held for several bit slots.

And there are higher-frequency components that result from the
transitions between voltage levels being sudden, not gradual.



Effect of Low-Pass Channel

a:[n] synthesized from g,

|
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la;. | cutoff @ +k=15
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How Low Can We Go?

|la;, | cutoff @ +k=15
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la;. | cutoff @ +k=14
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7 samples/bit — 14 samples/period — k=(N/14)=(196/14)=14



