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6.02 Fall 2012 
Lecture #14 

•  Spectral content via the DTFT 
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          So: 
                   |H1(Ω)| = [1.64 + 1.6cos(Ω)]1/2      EVEN function of  Ω;	


 
                   <H1(Ω) = arctan [–(0.8sin(Ω)/[1 + 0.8cos(Ω)]      ODD .          

= 
 
= 1+ 0.8e–jΩ = 1 + 0.8cos(Ω) – j0.8sin(Ω)   

h1[m]e
! j"m

m
#

Suppose channel is LTI with  
 

 h1[n]=δ[n]+0.8δ[n-1] 

Demo: “Deconvolving” Output of 
Channel with Echo 

Channel, 
   h1[.] 

Receiver 
filter,  h2[.] 

x[n] y[n] z[n] 

H1(Ω) = ?? 
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A Frequency-Domain view of Deconvolution 

Channel, 
   H1(Ω) 

Receiver 
filter, H2(Ω) 
 

x[n] y[n] z[n] 

Given H1(Ω), what should H2(Ω) be, to get z[n]=x[n]?   

H2(Ω)=1/H1(Ω)      “Inverse filter”  

= (1/|H1(Ω)|). exp{–j<H1(Ω)}  

Inverse filter at receiver does very badly in the presence of noise  
that adds to y[n]:  
     filter has high gain for noise precisely at frequencies where  
     channel gain|H1(Ω)| is low (and channel output is weak)! 

Noise w[n] 
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DT Fourier Transform (DTFT) for  
Spectral Representation of General x[n]   

If we can write 

h[n]= 1
2!

H (!)e j!n
<2!>
" d! H (!) = h[m]e" j!m

m
#where 

then we can write 

x[n]= 1
2!

X(!)e j!n
<2!>
" d! X(!) = x[m]e" j!m

m
#where 

This Fourier representation expresses x[n] as  
a weighted combination of         for all Ω in [–π,π].  e j!n

Any contiguous  
interval of length 
2π 

X(Ωο)dΩ  is the spectral content of x[n]  
in the frequency interval [Ωο, Ωο+ dΩ ]    
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http://cnx.org/content/m0524/latest/ 

The spectrum of the exponential signal (0.5)nu[n] is shown over the 
frequency range Ω = 2πf in [-4π,4π], The angle has units of degrees. 
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x[n] and X(Ω)  
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Input/Output Behavior of  
LTI System in Frequency Domain 

H(Ω) 

x[n]= 1
2!

X(!)e j!n
<2!>
" d! y[n]= 1

2!
H (!)X(!)e j!n

<2!>
" d!

Y (!) =  H (!)X(!)
Compare with y[n]=(h*x)[n] 
 
Again, convolution in time  
has mapped to  
multiplication in frequency  

y[n]= 1
2!

Y (!)e j!n
<2!>
" d!
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Magnitude and Angle 

Y (!) =  H (!)X(!)

|Y (!) |= |H (!) | . | X(!) |

<Y (!) = < H (!)+ < X(!)
and  
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Core of the Story 
1.  A huge class of DT and CT signals  
can be written --- using Fourier transforms --- as a  
weighted sums of sinusoids (ranging from very slow to very fast) 
or (equivalently, but more compactly) complex exponentials.  
The sums can be discrete ∑ or continuous ∫ (or both).  

2. LTI systems act very simply on sums of sinusoids: 
superposition of responses to each sinusoid, with the 
frequency response determining the frequency-dependent  
scaling of magnitude, shifting in phase.  
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Loudspeaker Bandpass Frequency Response 

http://forum.blu-ray.com/showthread.php?t=150915 
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http://www.pcmag.com/article2/0,2817,1769243,00.asp 
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http://forum.blu-ray.com/showthread.php?t=150915 

Spectral Content of Various Sounds 
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Connection between CT and DT 
The continuous-time (CT) signal  
 

                       x(t) = cos(ωt) = cos(2πft) 
 

sampled every T seconds, i.e., at a sampling 
frequency of fs = 1/T, gives rise to the discrete-time 
(DT) signal 

 

              x[n] = x(nT) =  cos(ωnT) = cos(Ωn) 
 

So                         Ω  = ωΤ	



	



and Ω = π corresponds to ω = π/T or f = 1/(2T) = fs/2 
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Signal x[n] that has its frequency content 
uniformly distributed  in [–Ωc , Ωc] 

=
1
2!

1!e j"n
#"C

"C

$ d"

=
sin("Cn)
!n

, n % 0

="C /! , n = 0

x[n]= 1
2!

X(!)e j!n
<2!>
" d!

    

DT “sinc” function 
(extends to ±∞ in time, 	


falls off only as 1/n)  
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x[n] and X(Ω)  
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X(Ω) and x[n]  
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Fast Fourier Transform (FFT) to compute 
samples of the DTFT for  
signals of finite duration 

 X(!k ) = x[m]
m=0

P"1

# e" j!km, x[n]= 1
P

X(!k )
k="P/2

(P/2)"1

# e j!kn   

where Ωk = k(2π/P), P is some integer (preferably a power of 2) 
such that P is longer than the time interval [0,L-1] over which  
x[n] is nonzero, and k ranges from –P/2 to (P/2)–1 (for even P). 
 
Computing these series involves O(P2) operations – when P gets 
large, the computations get very   s   l   o   w…. 
 
Happily, in 1965 Cooley and Tukey published a fast method for 
computing the Fourier transform (aka FFT, IFFT), rediscovering  
a technique known to Gauss.  This method takes O(P log P) 
operations. 
 P = 1024,  P2 = 1,048,576,  P logP ≈ 10,240 



6.02 Fall 2012 Lecture 14 Slide #18 

Where do the Ωk live?  
e.g., for P=6 (even) 

–π π 0 

Ω0	

 Ω1	

 Ω2	

 Ω3	

Ω-3	

 Ω-2	

 Ω-1	



exp(jΩ0)	



exp(jΩ-1)	



exp(jΩ2)	



 exp(jΩ3)	


= exp(jΩ-3) 

exp(jΩ1)	



exp(jΩ-2)	



. 1 –1 

j 

–j 
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Spectrum of Digital Transmissions 

(scaled version of DTFT samples) 



6.02 Fall 2012 Lecture 14 Slide #20 

Spectrum of Digital Transmissions 
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Observations on previous figure 
•  The waveform x[n] cannot vary faster than the step change every 7 

samples, so we expect the highest frequency components in the 
waveform to have a period around 14 samples. (The is rough and 
qualitative, as x[n] is not sinusoidal.) 

•  A period of 14 corresponds to a frequency of 2π/14 = π/7, which 
is 1/7 of the way from 0 to the positive end of the frequency axis 
at π (so k approximately 100/7 or 14 in the figure). And that 
indeed is the neighborhood of where the Fourier coefficients drop 
off significantly in magnitude.  

•  There are also lower-frequency components corresponding to the 
fact that the 1 or 0 level may be held for several bit slots. 

•  And there are higher-frequency components that result from the 
transitions between voltage levels being sudden, not gradual. 
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Effect of Low-Pass Channel 
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How Low Can We Go? 

7 samples/bit → 14 samples/period → k=(N/14)=(196/14)=14 


