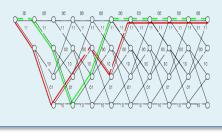


rf (freq. domain)

-20



INTRODUCTION TO EECS II DIGITAL COMMUNICATION SYSTEMS

6.02 Fall 2012 Lecture #15

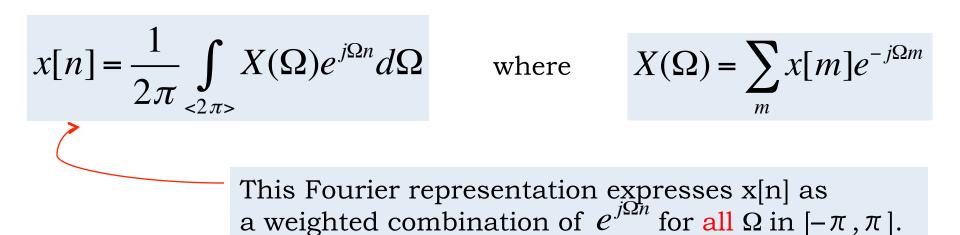
- Modulation
- to match the transmitted signal to the physical medium
- Demodulation

SCARY ST'UFF!!

Single Link Communication Model

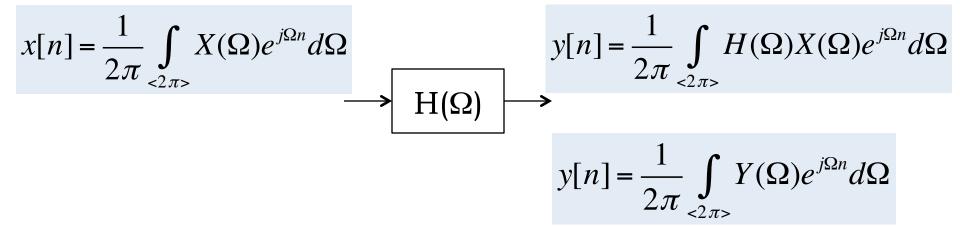


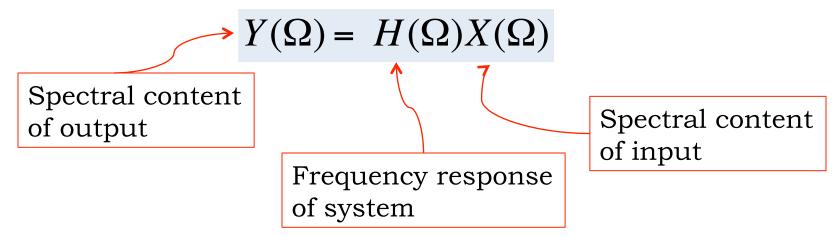
DT Fourier Transform (DTFT) for Spectral Representation of General x[n]

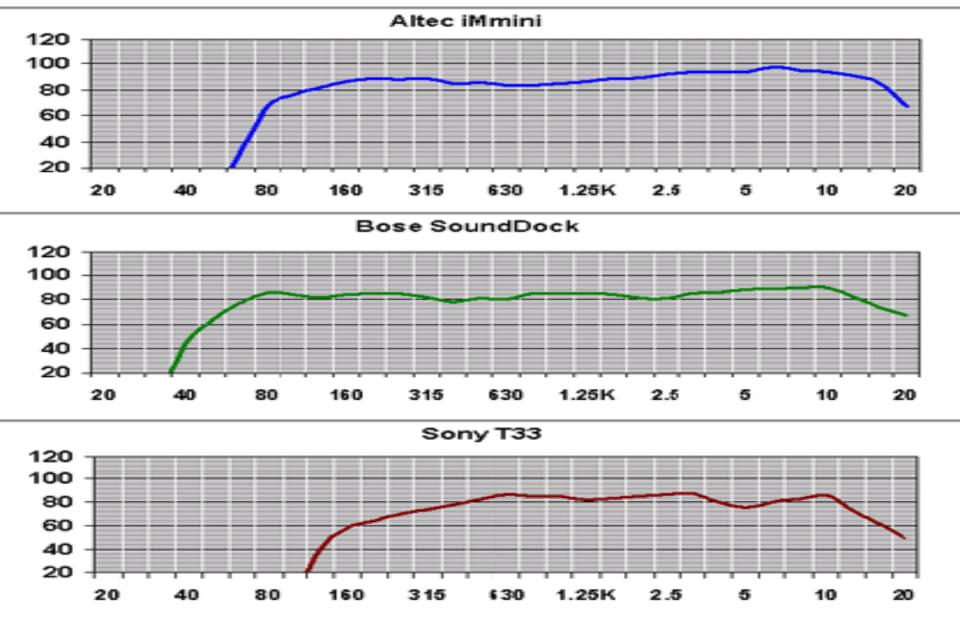


X(Ω_0)dΩ is the **spectral content** of x[n] in the frequency interval [Ω_0 , Ω_0 + dΩ]

Input/Output Behavior of LTI System in Frequency Domain



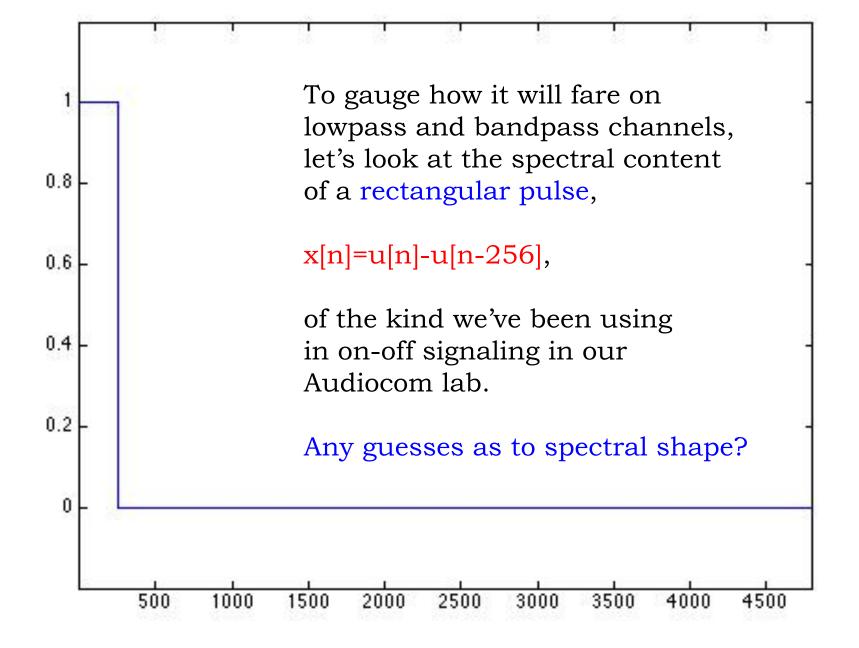




http://www.pcmag.com/article2/0,2817,1769243,00.asp 6.02 Fall 2012 Lecture 15 Slide #6

Phase of the frequency response is important too!

- Maybe not if we are only interested in audio, because the ear is not so sensitive to phase distortions
- But it's certainly important if we are using an audio channel to transmit non-audio signals such as digital signals representing 1's and 0's, not intended for the ear



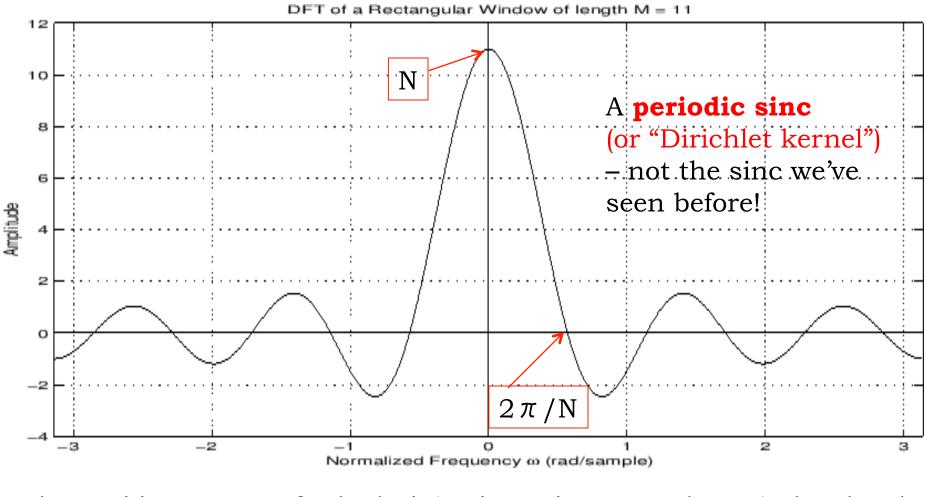
Derivation of DTFT for rectangular pulse x[m]=u[m]-u[m-N]

$$\begin{aligned} X(\Omega) &= \sum_{m=0}^{N-1} x[m] e^{-j\Omega m} \\ &= 1 + e^{-j\Omega} + e^{-j2\Omega} + \dots + e^{-j\Omega(N-1)} \\ &= (1 - e^{-j\Omega N}) / (1 - e^{-j\Omega}) \\ &= e^{-j\Omega(N-1)/2} \frac{\sin(\Omega N/2)}{\sin(\Omega/2)} \end{aligned}$$

Height N at the origin, first zero-crossing at $2\pi/N$

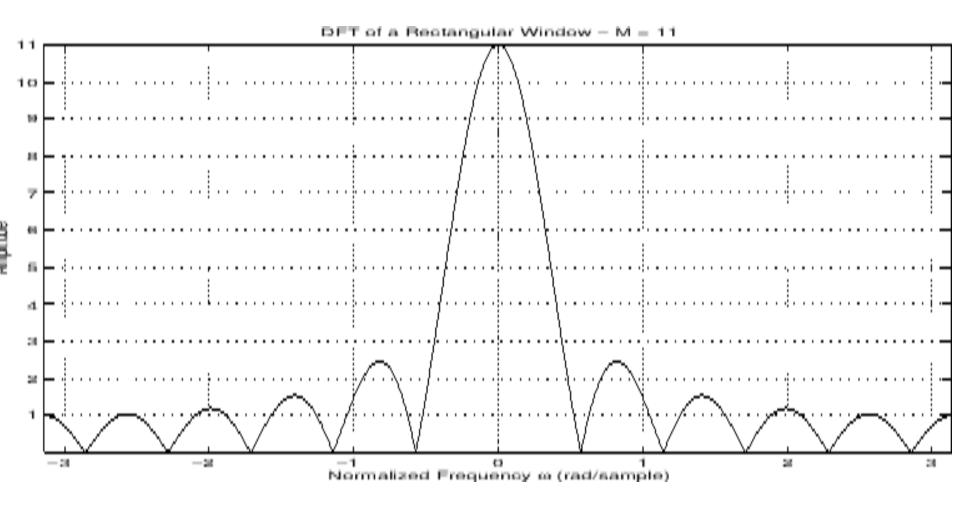
Shifting in time only changes the phase term in front. If the rectangular pulse is centered at 0, this term is 1.

Simpler case: DTFT of x[n] = u[n+5] - u[n-6](centered rectangular pulse of length 11)

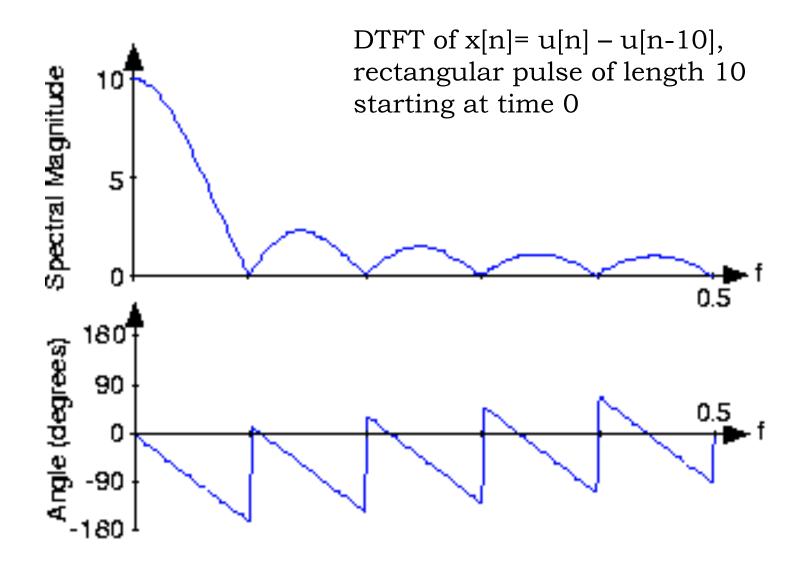


https://ccrma.stanford.edu/~jos/sasp/Rectangular_Window.html 6.02 Fall 2012 Lecture 15 Slide #10

Magnitude of preceding DTFT



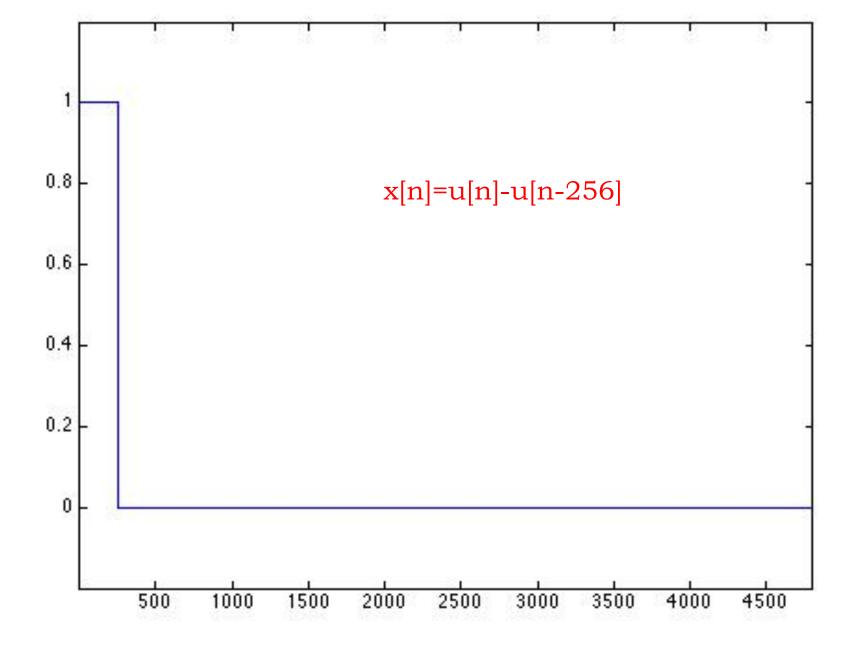
https://ccrma.stanford.edu/~jos/sasp/Rectangular_Window.html 6.02 Fall 2012 Lecture 15 Slide #11



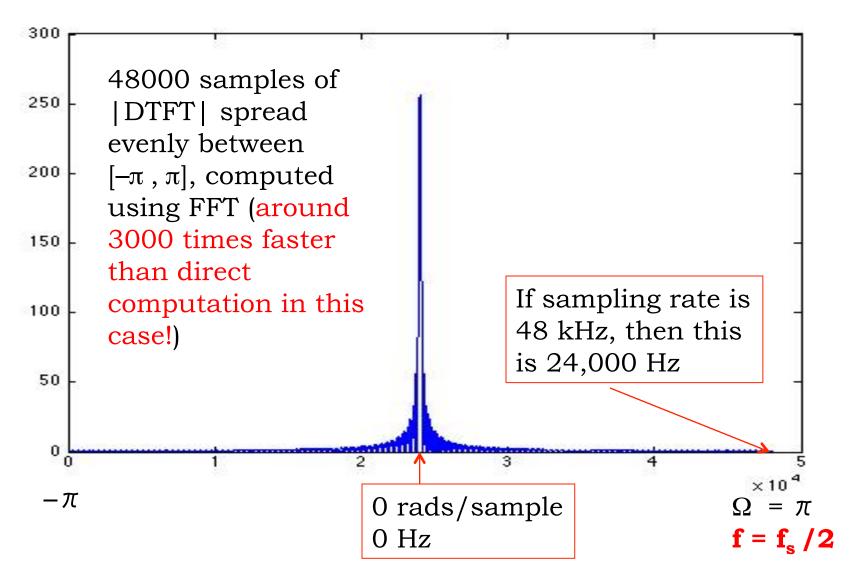
http://cnx.org/content/m0524/latest/

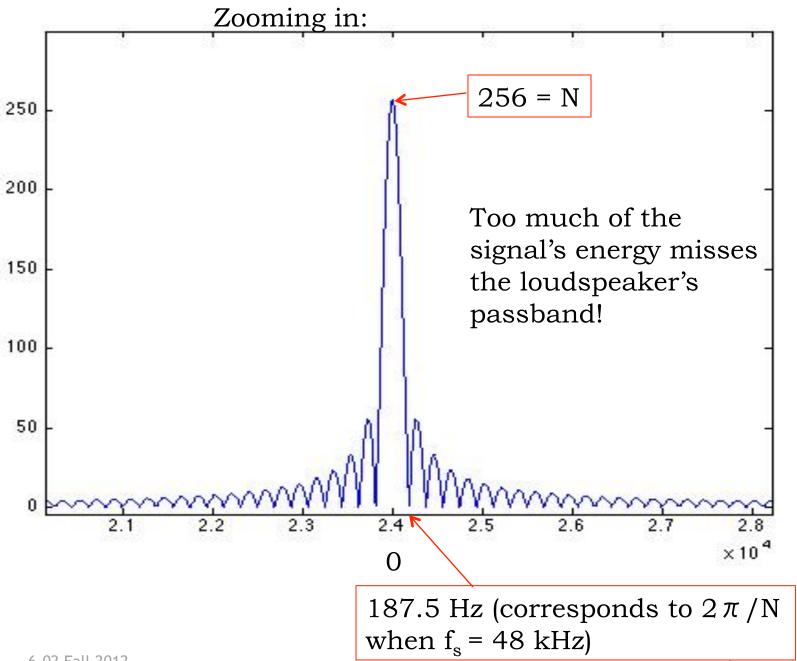
Lecture 15 Slide #12

Back to our Audiocom lab example



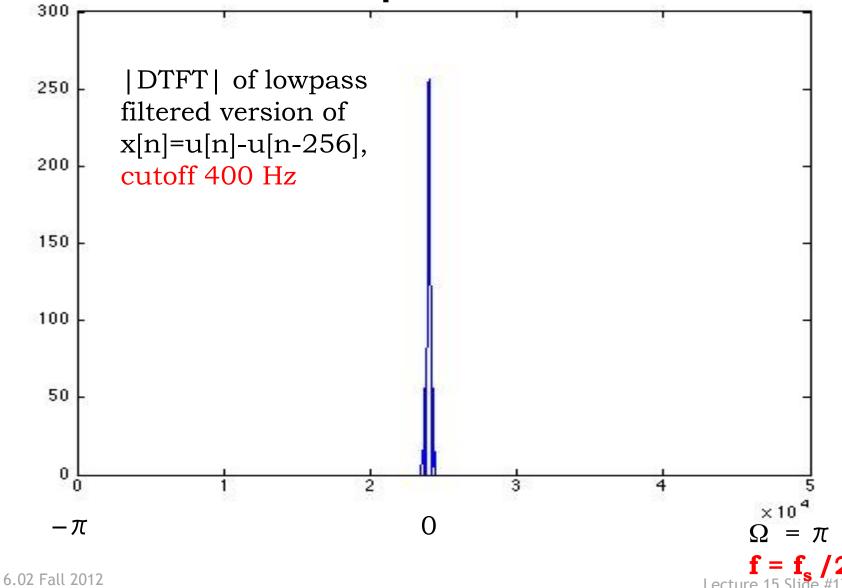
|DTFT| of x[n]=u[n]-u[n-256], rectangular pulse of length 256:

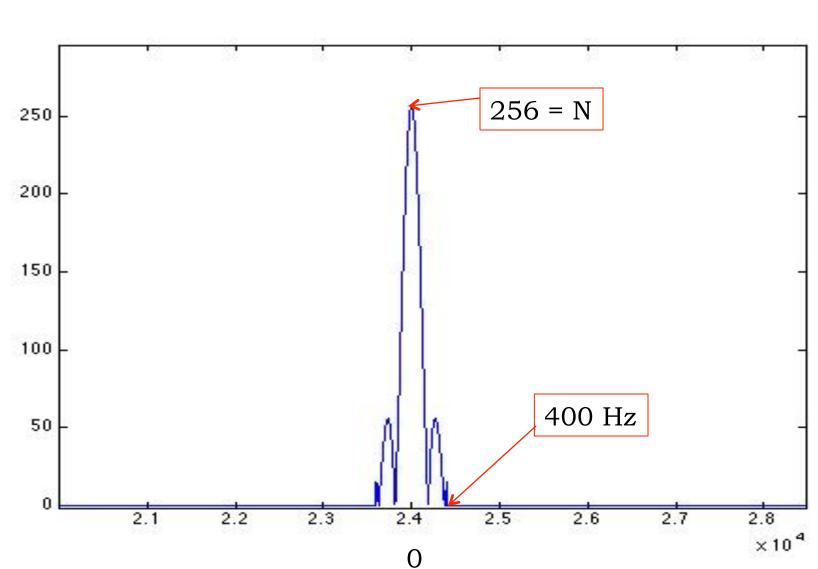




6.02 Fall 2012

What if we sent this pulse through an ideal lowpass channel?

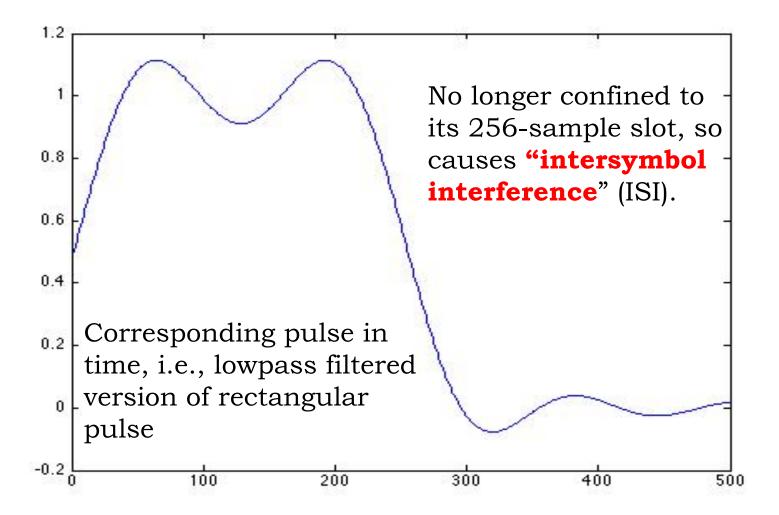




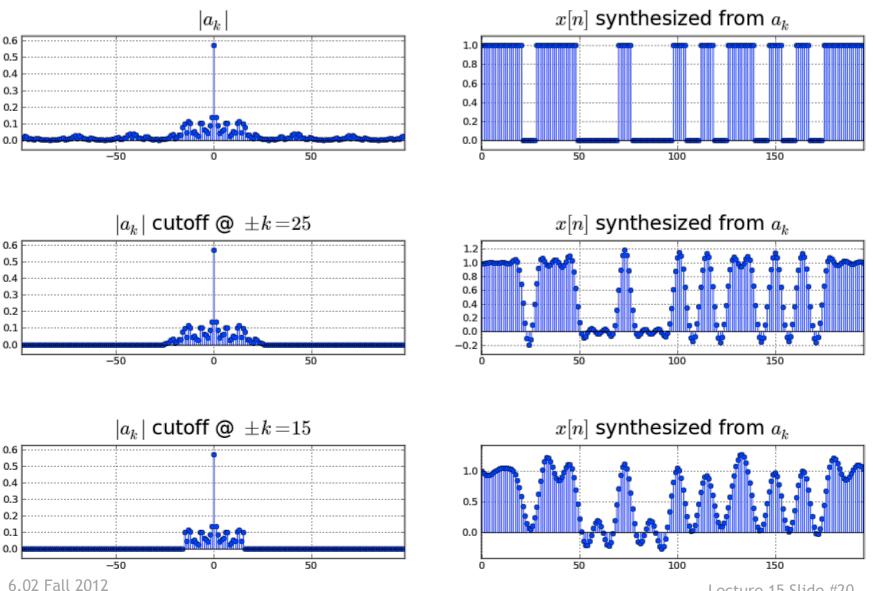
Zooming in:

6.02 Fall 2012

Lecture 15 Slide #18

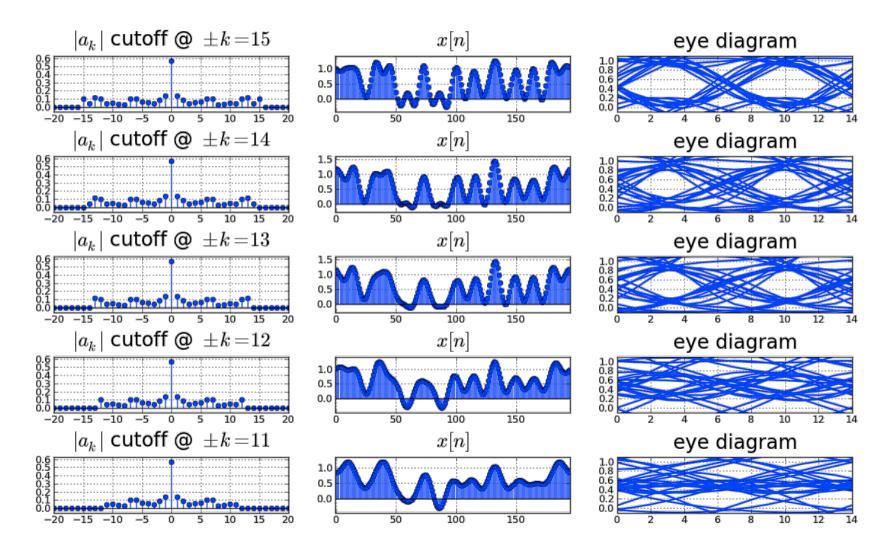


Effect of Low-Pass Channel



Lecture 15 Slide #20

How Low Can We Go?

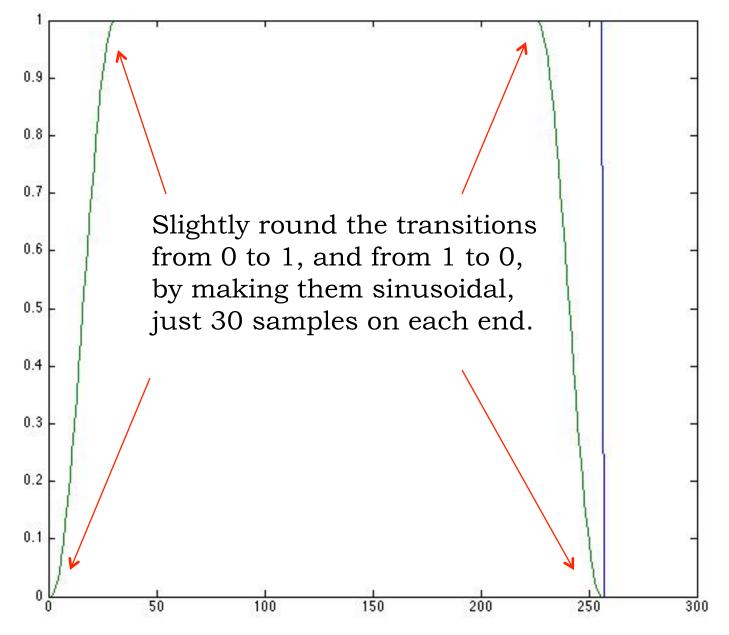


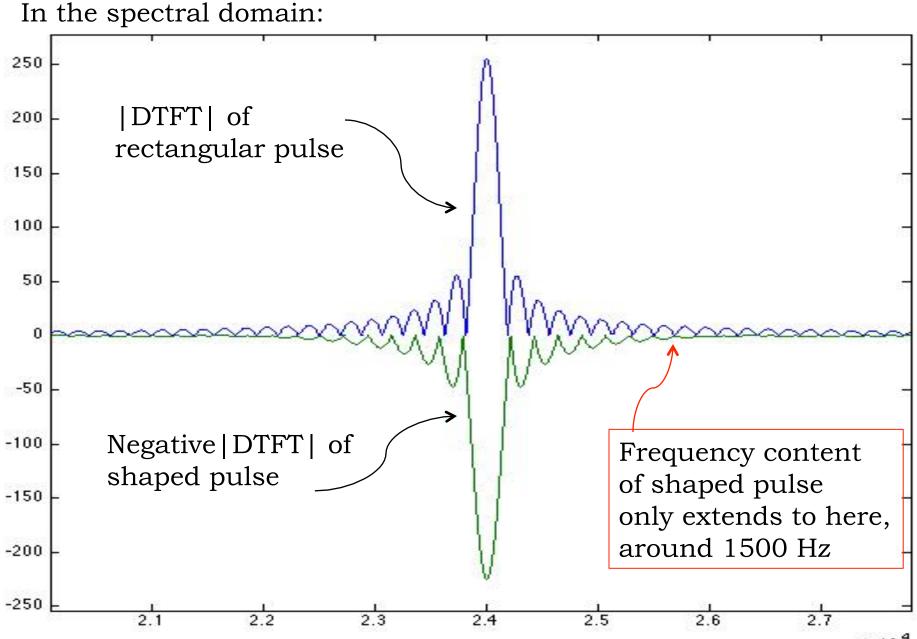
6.02 Fall 2012

Complementary/dual behavior in time and frequency domains

- Wider in time, narrower in frequency; and vice versa.
 - This is actually the basis of the uncertainty principle in physics!
- Smoother in time, sharper in frequency; and vice versa
- Rectangular pulse in time is a (periodic) sinc in frequency, while rectangular pulse in frequency is a sinc in time; etc.

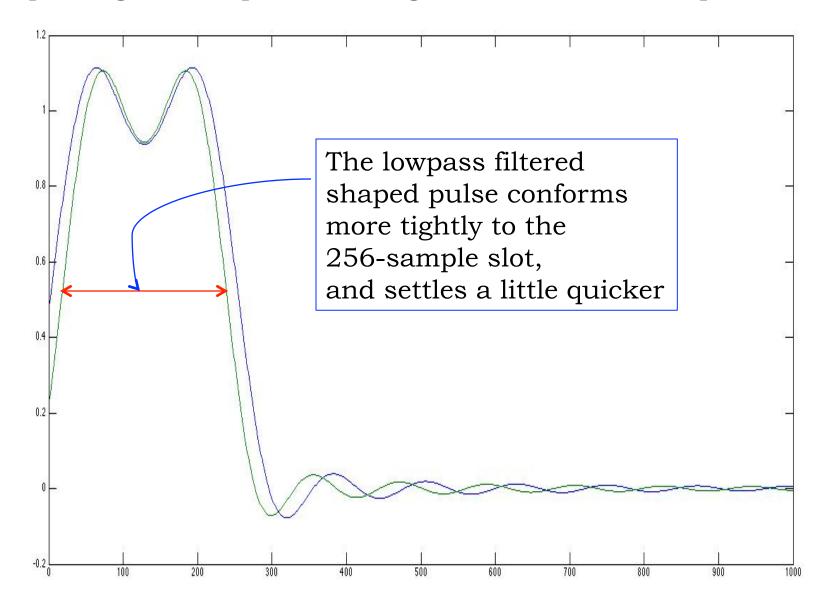
A shaped pulse versus a rectangular pulse:





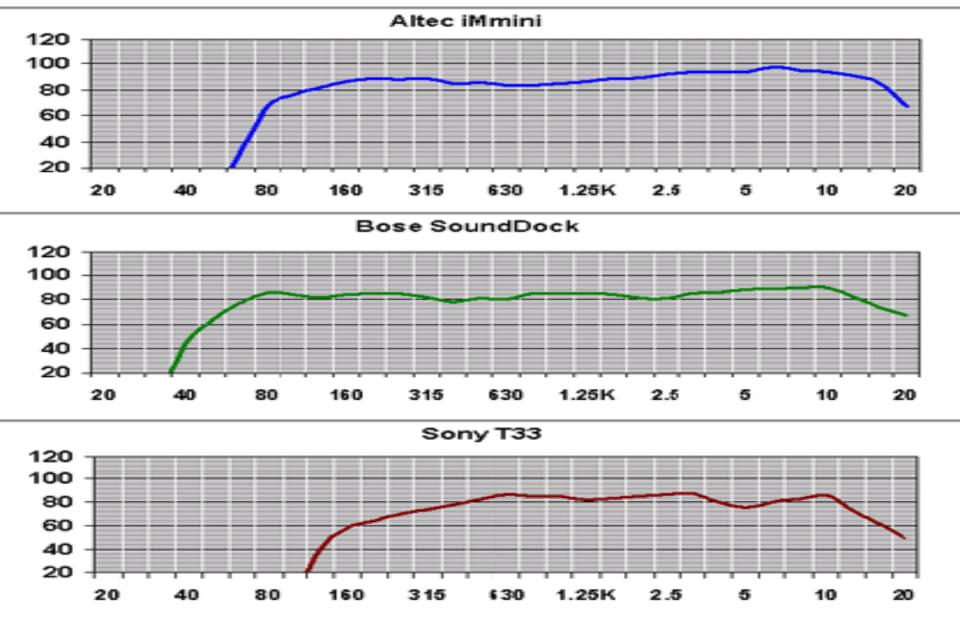
×10⁴

After passing the two pulses through a 400 Hz cutoff lowpass filter:

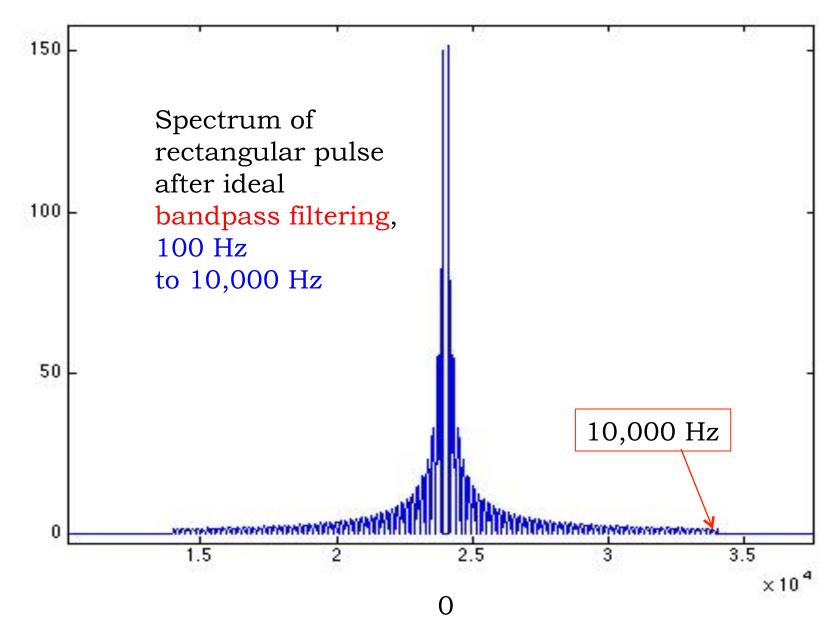


But loudspeakers are bandpass,

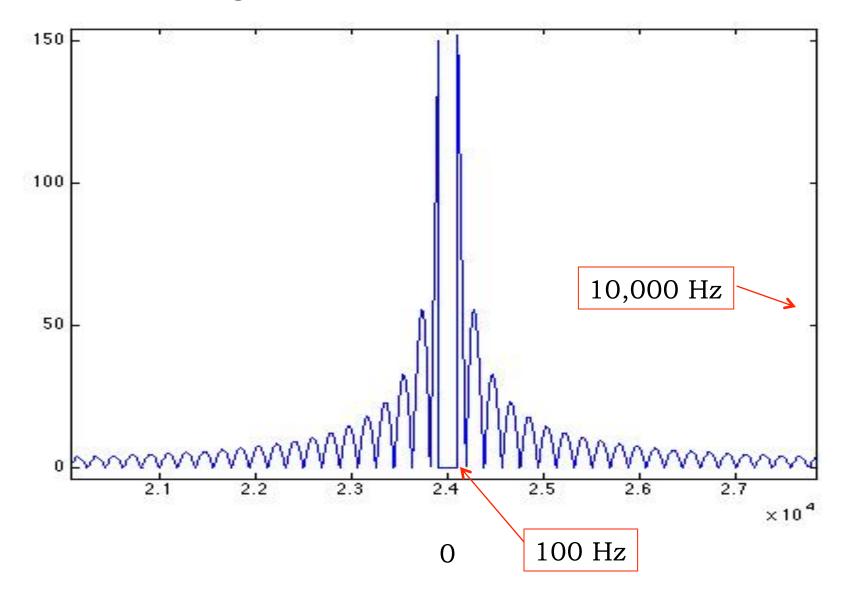
not lowpass

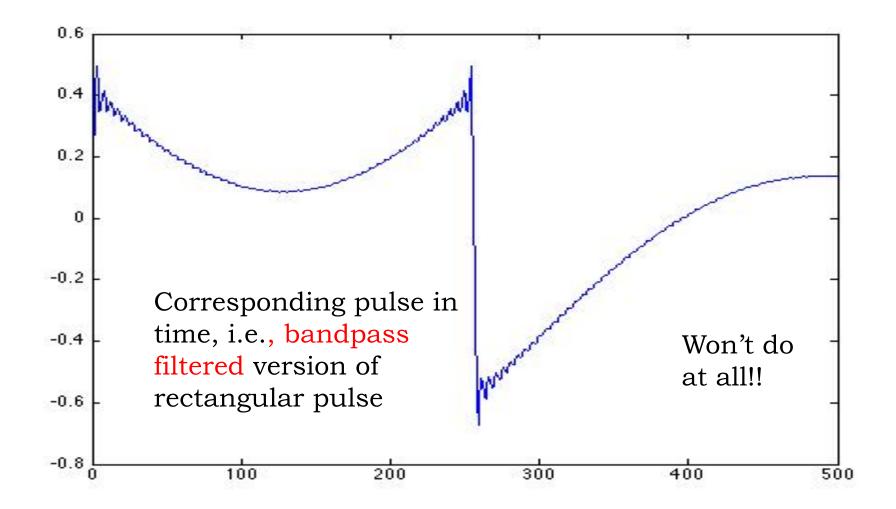


http://www.pcmag.com/article2/0,2817,1769243,00.asp 6.02 Fall 2012 Lecture 15 Slide #27



Zooming in:





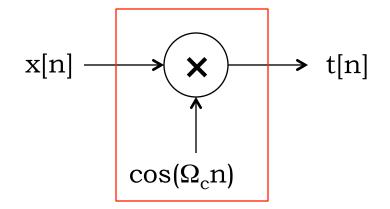
The Solution: Modulation

• Shift the spectrum of the signal x[n] into the loudspeaker's passband by **modulation!**

$$\begin{aligned} x[n]\cos(\Omega_{c}n) &= 0.5x[n](e^{j\Omega_{c}n} + e^{-j\Omega_{c}n}) \\ &= \frac{0.5}{2\pi} \left[\int_{<2\pi>} X(\Omega')e^{j(\Omega'+\Omega_{c})n}d\Omega' + \int_{<2\pi>} X(\Omega'')e^{j(\Omega''-\Omega_{c})n}d\Omega'' \right] \\ &= \frac{0.5}{2\pi} \left[\int_{<2\pi>} X(\Omega-\Omega_{c})e^{j\Omega n}d\Omega + \int_{<2\pi>} X(\Omega+\Omega_{c})e^{j\Omega n}d\Omega \right] \end{aligned}$$

Spectrum of modulated signal comprises half-height replications of $X(\Omega)$ centered as $\pm \Omega_c$ (i.e., plus and minus the carrier frequency). So choose carrier frequency comfortably in the passband, leaving room around it for the spectrum of x[n]. 6.02 Fall 2012

Is Modulation Linear? Time-Invariant? ...



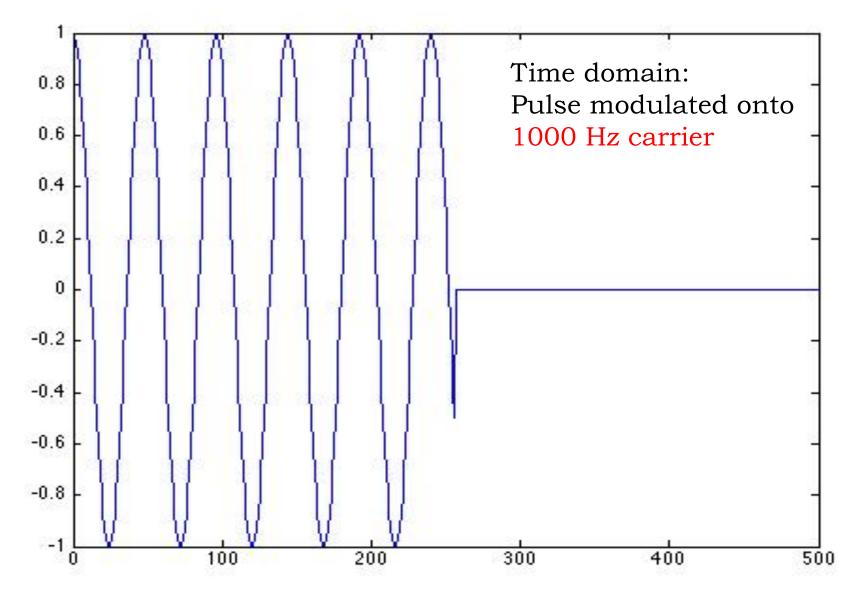
... as a system that takes input x[n] and produces output t[n] for transmission?

Yes, linear!

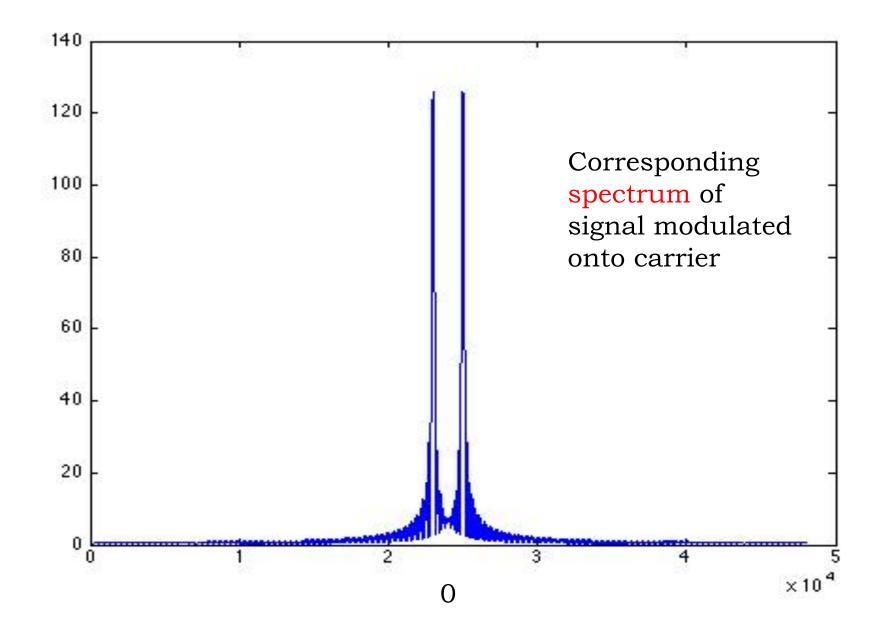
No, not time-invariant!

6.02 Fall 2012

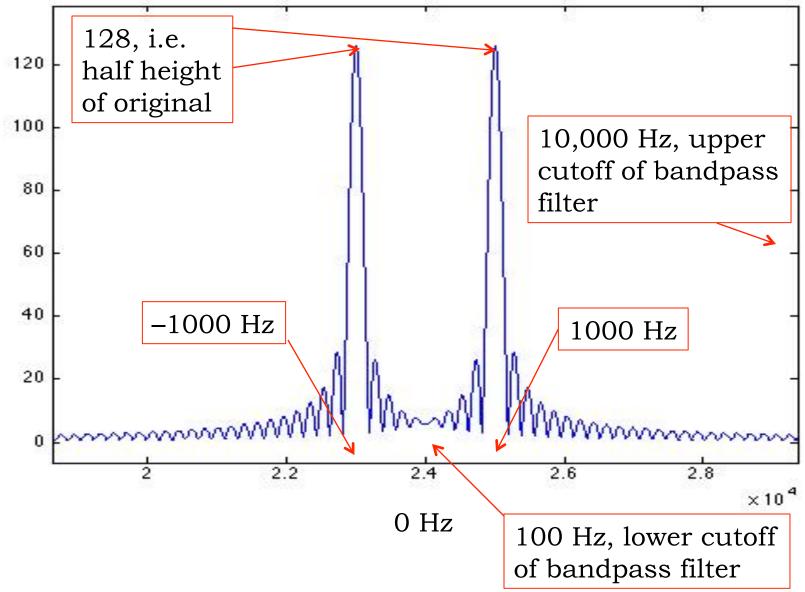
So for our rectangular pulse example:

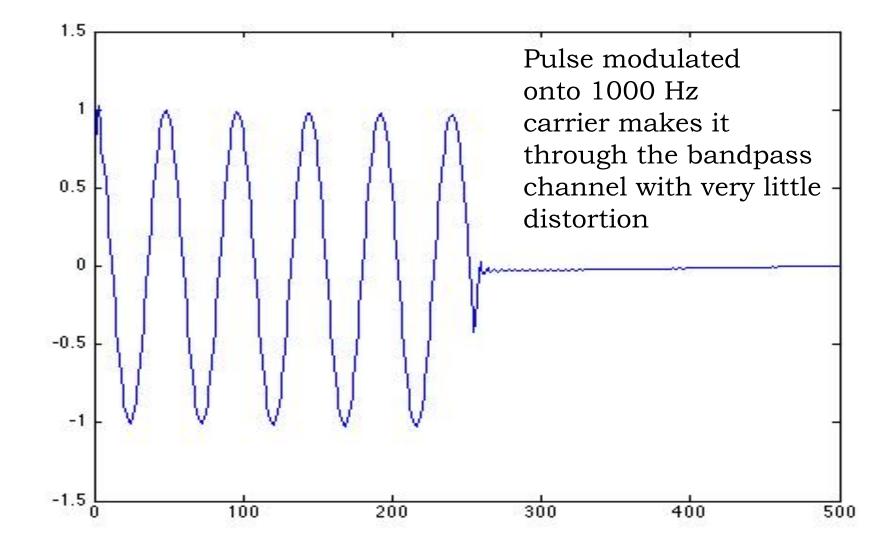


Lecture 15 Slide #33



Zooming in:





SCARY GOOD!!

At the Receiver: Demodulation

• In principle, this is (as easy as) modulation again:

If the received signal is $r[n] = x[n]cos(\Omega_{c}n),$ then simply compute $d[n] = r[n]cos(\Omega_{c}n)$ $= x[n]cos^{2}(\Omega_{c}n)$ $= 0.5 \{x[n] + x[n]cos(2\Omega_{c}n)\}$

- What does the spectrum of d[n] look like?
- What constraint on the bandwidth of x[n] is needed for perfect recovery of x[n]?