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6.02 Fall 2012 
Lecture #15 

•  Modulation 
– to match the transmitted signal to 
the physical medium 
•  Demodulation   
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SCARY STUFF!!!
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DT Fourier Transform (DTFT) for  
Spectral Representation of General x[n]   

x[n]= 1
2!

X(!)e j!n
<2!>
" d! X(!) = x[m]e" j!m

m
#where 

This Fourier representation expresses x[n] as  
a weighted combination of         for all Ω in [–π,π].  e j!n

X(Ωο)dΩ  is the spectral content of x[n]  
in the frequency interval [Ωο, Ωο+ dΩ ]    



6.02 Fall 2012 Lecture 15 Slide #5 

Input/Output Behavior of  
LTI System in Frequency Domain 

H(Ω) 

x[n]= 1
2!

X(!)e j!n
<2!>
" d! y[n]= 1

2!
H (!)X(!)e j!n

<2!>
" d!

Y (!) =  H (!)X(!)

y[n]= 1
2!

Y (!)e j!n
<2!>
" d!

Spectral content  
of output Spectral content  

of input 
Frequency response  
of system 
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http://www.pcmag.com/article2/0,2817,1769243,00.asp 
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Phase of the frequency response  
is important too! 

•  Maybe not if we are only interested in audio, 
because the ear is not so sensitive to phase 
distortions 

•  But it’s certainly important if we are using an 
audio channel to transmit non-audio signals such 
as digital signals representing 1’s and 0’s, not 
intended for the ear 
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To gauge how it will fare on  
lowpass and bandpass channels,  
let’s look at the spectral content  
of a rectangular pulse,  
 
x[n]=u[n]-u[n-256],  
 
of the kind we’ve been using  
in on-off signaling in our  
Audiocom lab. 
 
Any guesses as to spectral shape? 
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Derivation of DTFT for rectangular pulse 
x[m]=u[m]-u[m-N] 

X(!) = x[m]e" j!m
m=0

N"1

#

=1+ e" j! + e" j2! +…+ e" j!(N"1)

= (1" e" j!N ) / (1" e" j!)

= e" j!(N"1)/2 sin(!N / 2)
sin(! / 2)

Shifting in time only changes the phase term in front. 
If the rectangular pulse is centered at 0, this term is 1. 

Height N at the origin, 
first zero-crossing at 
2π/N 
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https://ccrma.stanford.edu/~jos/sasp/Rectangular_Window.html 

Simpler case: DTFT of x[n] = u[n+5] – u[n-6] 
(centered rectangular pulse of length 11) 

A periodic sinc  
(or “Dirichlet kernel”) 
– not the sinc we’ve  
seen before! 

N 

2π/N 
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https://ccrma.stanford.edu/~jos/sasp/Rectangular_Window.html 

Magnitude of preceding DTFT 
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http://cnx.org/content/m0524/latest/ 

DTFT of x[n]= u[n] – u[n-10], 
rectangular pulse of length 10 
starting at time 0  



6.02 Fall 2012 Lecture 15 Slide #13 

Back to our Audiocom lab example 
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x[n]=u[n]-u[n-256] 
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|DTFT| of x[n]=u[n]-u[n-256], 
rectangular pulse of length 256: 

48000 samples of  
|DTFT| spread 
evenly between 
[–π , π], computed 
using FFT (around  
3000 times faster 
than direct 
computation in this 
case!) 

–π Ω  = π 
f = fs /2 

0 rads/sample 
0 Hz 

If sampling rate is 
48 kHz, then this  
is 24,000 Hz 
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Zooming in: 

0 

187.5 Hz (corresponds to 2π/N  
when fs = 48 kHz)  

256 = N 

Too much of the  
signal’s energy misses 
the loudspeaker’s 
passband! 
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|DTFT| of lowpass 
filtered version of  
x[n]=u[n]-u[n-256], 
cutoff 400 Hz  

–π Ω  = π 
f = fs /2 

0 

What if we sent this pulse through an 
ideal lowpass channel? 
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Zooming in: 

0 

400 Hz 

256 = N 
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Corresponding pulse in  
time, i.e., lowpass filtered  
version of rectangular 
pulse 

No longer confined to  
its 256-sample slot, so  
causes “intersymbol 
interference” (ISI).   
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Effect of Low-Pass Channel 
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How Low Can We Go? 
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Complementary/dual behavior in  
time and frequency domains 

•  Wider in time, narrower in frequency; and vice 
versa. 
–  This is actually the basis of the uncertainty principle 

in physics! 

•  Smoother in time, sharper in frequency; and vice 
versa 

•  Rectangular pulse in time is a (periodic) sinc in 
frequency, while rectangular pulse in frequency is 
a sinc in time; etc. 
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Slightly round the transitions 
from 0 to 1, and from 1 to 0,  
by making them sinusoidal,  
just 30 samples on each end.  

A shaped pulse versus a rectangular pulse: 
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|DTFT| of  
rectangular pulse 

Negative|DTFT| of  
shaped pulse 

Frequency content 
of shaped pulse  
only extends to here, 
around 1500 Hz 

In the spectral domain: 
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The lowpass filtered 
shaped pulse conforms  
more tightly to the  
256-sample slot,  
and settles a little quicker 

After passing the two pulses through a 400 Hz cutoff lowpass filter: 
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But loudspeakers are bandpass, 
  

not lowpass 
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http://www.pcmag.com/article2/0,2817,1769243,00.asp 
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Spectrum of  
rectangular pulse  
after ideal 
bandpass filtering,  
100 Hz  
to 10,000 Hz  

10,000 Hz 

0 



6.02 Fall 2012 Lecture 15 Slide #29 

Zooming in: 

100 Hz 0 

10,000 Hz 



6.02 Fall 2012 Lecture 15 Slide #30 

Corresponding pulse in  
time, i.e., bandpass  
filtered version of  
rectangular pulse 

Won’t do  
at all!! 
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The Solution: Modulation 

•  Shift the spectrum of the signal x[n] into the 
loudspeaker’s passband by modulation! 

x[n]cos(!cn) = 0.5x[n](e
j!cn + e" j!cn )

=
0.5
2!
[ X(! ')e j (! '+!c )n

<2!>
# d! '+ X(!")e j (!""!c )n

<2!>
# d!"]

=
0.5
2!
[ X(!"!c )e

j!n

<2!>
# d!+ X(!+!c )e

j!n

<2!>
# d!]

Spectrum of modulated signal comprises half-height 
replications of X(Ω) centered as ±Ωc (i.e., plus and minus  
the carrier frequency). So choose carrier frequency comfortably 
in the passband, leaving room around it for the spectrum of x[n]. 
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Is Modulation Linear? Time-Invariant? … 

×x[n] 

cos(Ωcn) 

t[n] 

… as a system that takes input x[n] and produces  
output t[n] for transmission?  

Yes, linear! 
 
No, not time-invariant! 
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Time domain: 
Pulse modulated onto 
1000 Hz carrier  

So for our rectangular pulse example: 
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0 

Corresponding  
spectrum of 
signal modulated 
onto carrier 
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0 Hz 100 Hz, lower cutoff  
of bandpass filter 

1000 Hz 

Zooming in: 

128, i.e. 
half height 
of original 

10,000 Hz, upper  
cutoff of bandpass 
filter  

–1000 Hz 
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Pulse modulated  
onto 1000 Hz 
carrier makes it 
through the bandpass 
channel with very little  
distortion  
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SCARY GOOD!!!
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At the Receiver: Demodulation 
•  In principle, this is (as easy as) modulation again: 

If the received signal is 
                         r[n] = x[n]cos(Ωcn),  

then simply compute 

                        d[n] = r[n]cos(Ωcn) 
                               = x[n]cos2(Ωcn) 

                               = 0.5 {x[n] + x[n]cos(2Ωcn)} 
 

•  What does the spectrum of d[n] look like?  
•  What constraint on the bandwidth of x[n] is needed 

for perfect recovery of x[n]?           


