Name: STAFF SOLUTIONS

DEPARTMENT OF EECS MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.02 Fall 2011

Quiz I

October 18, 2011

" x " your section	Section $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Time 10-11 11-12 12-1 1-2 2-3 3-4	$\begin{aligned} & \underline{\text { Room }} \\ & 36-112 \\ & 36-112 \\ & 36-112 \\ & 36-112 \\ & 26-168 \\ & 26-168 \end{aligned}$	Recitation Instructor Paul Ampadu Sidhant Misra Sidhant Misra Paul Ampadu Karl Berggren Karl Berggren	" \times " your TA \square Mukul Agarwal \square Jason Cloud \square Shuo Deng \square Lyla Fischer \square Rui Li \square Ruben Madrigal \square Surapap R. \square Xiawa Wang

There are $\mathbf{1 4}$ questions (some with multiple parts) and ?? pages in this quiz booklet. Answer each question according to the instructions given. You have $\mathbf{1 2 0}$ minutes to answer the questions.

If you find a question ambiguous, please be sure to write down any assumptions you make. Please be neat and legible. Please show your work for partial credit. And please write your name above.

Use the empty sides of this booklet if you need scratch space. You may also use them for answers, although you shouldn't need to. If you use the blank sides for answers, make sure to say so!

One two-sided "crib sheet" and a calculator allowed. No other notes, books, computers, cell phones, PDAs, information appliances, carrier pigeons, etc.!
PLEASE NOTE: SEVERAL STUDENTS WILL TAKE THE MAKE-UP QUIZ TOMORROW AT 7.30 PM. UNTIL THEN, PLEASE DO NOT DISCUSS THIS QUIZ WITH ANYONE IN THE CLASS, UNLESS YOU ARE CERTAIN THEY HAVE TAKEN IT WITH YOU TODAY. THANKS!

Do not write in the boxes below

1-3 (x/11)	4-5 (x/14)	$6-7(x / 11)$	8-11 (x/16)	12-13 (x/28)	$14(x / 20)$	Total (x/100)

I Information, Entropy, and Source Coding

Suppose the temperature tomorrow can take on one of $N \geq 3$ possible distinct values, $V_{1}, V_{2}, \ldots, V_{N}$, whose respective probabilities are $p_{1} \geq p_{2} \ldots \geq p_{N}>0$, with $\sum_{i=1}^{N} p_{i}=1$. Call this distribution D.

1. [1 points]: Write the expression for the entropy of D in terms of the quantities defined above.

Solution: From the definition of entropy,

$$
H(D)=-\sum_{1}^{N} p_{i} \log _{2} p_{i}
$$

2. [4 points]: The weatherperson, who is never wrong, announces that the temperature tomorrow is guaranteed to be one of three distinct values.
A. What set of three values for tomorrow's temperature will convey the most information?

Solution: The less probable the event, the more informative it is to be told the event will occur. The event $\left\{V_{i}\right.$ or V_{j} or $\left.V_{k}\right\}$ for distinct i, j, k has probability $p_{i}+p_{j}+p_{k}$, since the outcomes V_{i}, V_{j} and V_{k} are mutually exclusive. Hence the most informative event is $\left\{V_{N-2}\right.$ or V_{N-1} or $\left.V_{N}\right\}$, i.e.,, the three temperatures are V_{N-2}, V_{N-1} and V_{N}.
B. How much information about tomorrow's temperature has the weatherperson given you if the three values are the most informative ones that you specified in Part A? Give both the expression and the units in which this information is expressed.
Solution: The corresponding information is

$$
-\log _{2}\left(p_{N-2}+p_{N-1}+p_{N}\right) \text { bits. }
$$

3. [6 points]: Suppose we take the distribution D and combine two values, V_{1} and V_{2}, into a single "value", V_{12}, standing for the event "the temperature can be either V_{1} or V_{2} ", while keeping all the other $N-2$ values and probabilities the same (note that $N \geq 3$). Call the resulting distribution D^{\prime}.
Which of the following statements is true? Select the best answer from the choices below (circle your choice). You must correctly explain your choice in the space below to receive full credit.
A. There exists some distribution D for which D has the same entropy as D^{\prime}.
B. D always has strictly higher entropy than D^{\prime}.
C. There exists some distribution D for which D has lower entropy than D^{\prime}.

Solution: The correct answer is B. Intuitively, there is less uncertainty about the outcome of D^{\prime}, because there has been some "binning" of values - distinct items from D are now reported under the same label in D^{\prime}. For a formal proof, we proceed as follows:

Keeping in mind that the probability of the event V_{12} is $p_{1}+p_{2}$, we know that

$$
\begin{aligned}
H(D)-H\left(D^{\prime}\right) & =p_{1} \log _{2}\left(\frac{1}{p_{1}}\right)+p_{2} \log _{2}\left(\frac{1}{p_{2}}\right)-\left(p_{1}+p_{2}\right) \log _{2}\left(\frac{1}{p_{1}+p_{2}}\right) \\
& =p_{1}\left[\log _{2}\left(\frac{1}{p_{1}}\right)-\log _{2}\left(\frac{1}{p_{1}+p_{2}}\right)\right]+p_{2}\left[\log _{2}\left(\frac{1}{p_{2}}\right)-\log _{2}\left(\frac{1}{p_{1}+p_{2}}\right)\right]
\end{aligned}
$$

The first equality is because all other terms in $H(D)$ and $H\left(D^{\prime}\right)$ are identical. Note now that the terms in the square brackets are strictly positive, from which we conclude that $H(D)>H\left(D^{\prime}\right)$.
4. [6 points]: Ben Bitdiddle and Alyssa P. Hacker are taking the 6.02 quiz and encounter the following Huffman coding problem. They are given four symbols, A, B, C, D, and the associated symbol probabilities, $p_{A} \geq p_{B} \geq p_{C} \geq p_{D}$, and are asked to construct the Huffman code tree. They construct two different trees, both correct constructions. The code trees have the following properties:

Ben's tree: The length of the longest path from the root to a symbol is 3 .
Alyssa's tree: The length of the longest path from the root to a symbol is 2 .
Derive one constraint relating the symbol probabilities, which ensures that both Ben and Alyssa are correct. Write down the constraint, and show Ben's and Alyssa's trees below.
Solution: The constraint is

$$
p_{C}+p_{D}=p_{A} .
$$

The reason is that C and D combine first to form a super node $C D$. We are then left with CD, B, and A. In the next step, because $p_{B} \leq p_{A}, B$ will need to combine with either $C D$ or A. If B combines with $C D$, then we have Ben's tree; otherwise, we have Alyssa's tree. To obtain Ben's tree, we need the condition

$$
p_{B}+p_{c}+p_{D} \leq p_{A}+p_{B},
$$

i.e., $p_{A} \leq p_{C}+p_{D}$. In contrast, to get Alyssa's tree, we need the condition

$$
p_{B}+p_{C}+p_{D} \geq p_{A}+p_{B},
$$

i.e., $p_{C}+p_{D} \geq p_{A}$. The only consistent constraint between these two inequalities is

$$
p_{C}+p_{D}=p_{A} .
$$

Note that p_{B} does not have to equal p_{A} for both trees to be consistent. Of course, we are told that $p_{B} \leq p_{A}$, so one can't arbitrarily pick p_{B}. Here are some examples of probabilities that make both trees be correct:

$$
(1 / 3,1 / 3,1 / 6,1 / 6)(2 / 5,1 / 5,1 / 5,1 / 5)(4 / 7,3 / 7,2 / 7,2 / 7)
$$

The two trees are shown below. Ben's tree is isomorphic to:

Alyssa's tree is isomorphic to:

5. [8 points]: Circle True or False for each of these statements about LZW. Briefly explain each answer to receive credit. Recall that a codeword in LZW is an index into the string table.
A. True / False Suppose the sender adds two strings with corresponding codewords c_{1} and c_{2} in that order to its string table. Then, it may transmit c_{2} for the first time before it transmits c_{1}.

Solution: True. Whenever a new string is added to the table, the codeword corresponding to the string without the final symbol is transmitted, but the string that gets added may show up only much later in the text being compressed, or indeed may not show up at all! Consider, for example, the string $a b b b b b b b b b b b b \ldots$ The string $a b$ is added to the table early in the process, but the corresponding codeword is never transmitted, while the codewords corresponding to strings added later, such a $b b, b b b$, etc. get transmitted earlier. Thus the order in which codewords are added to the table is not necessarily related to the order in which they are transmitted.
B. True / False Suppose the string table never gets full. If there is an entry for a string s in the string table, then the sender must have previously sent a distinct codeword for every non-null prefix of string s. (If $s \equiv p+s^{\prime}$ where + is the string concatenation operation and s^{\prime} is some non-null string, then p is said to be a prefix of s.)
Solution: True. Suppose we add the string " $s t r+s$ " to the table, where " s " is a single character. At this time, we know that "str" must be in the table, and the encoder must transmit the codeword corresponding to "str". This argument now recursively applies to "str" as well: when we added "str" to the table, its longest-prefix (assuming "str" is of length 2 or greater) must have already been in the table, and the corresponding codeword sent. This argument applies until we get to the first character of the string "str +s ". Hence, the statement is true.

II Digital Signaling

Material not yet covered.

III Noise

Material not yet covered.

IV Linear Block Codes

See pset for solutions to a similar problem.

V Convolutional Codes

See pset for solutions.

